Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.950
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554877

RESUMEN

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reparación del ADN/fisiología , ADN de Cadena Simple/fisiología , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Escherichia coli/metabolismo , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
2.
Cell ; 167(5): 1430-1430.e1, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863253

RESUMEN

This SnapShot depicts key sequencing-based methods used in the analysis of epigenomes, including (1)bisulfite sequencing, (2) chromatin immunoprecipiation sequencing, (3) determination of open chromatin, and (4) 3D chromatin capture.


Asunto(s)
Inmunoprecipitación de Cromatina , Epigenómica/métodos , 5-Metilcitosina/metabolismo , Cromosomas/química , Metilación de ADN
3.
Cell ; 161(4): 879-892, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25936837

RESUMEN

N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.


Asunto(s)
Adenina/análogos & derivados , Chlamydomonas reinhardtii/genética , Sitio de Iniciación de la Transcripción , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Chlamydomonas reinhardtii/metabolismo , ADN de Algas/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Nucleosomas/metabolismo , Transcripción Genética
4.
Mol Cell ; 82(5): 1053-1065.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245449

RESUMEN

Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.


Asunto(s)
Azidas , ADN (Citosina-5-)-Metiltransferasas , 5-Metilcitosina , Animales , Azidas/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Mamíferos/metabolismo , Ratones
5.
Annu Rev Biochem ; 83: 585-614, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905787

RESUMEN

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Asunto(s)
Metilación de ADN , ADN/química , Regulación de la Expresión Génica , Oxígeno/química , ARN/química , 5-Metilcitosina/química , Animales , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citología , Células HEK293 , Humanos , Metilación , Ratones , Neoplasias/genética , Células Madre/citología , Transcriptoma
6.
Nat Rev Mol Cell Biol ; 18(1): 31-42, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27808276

RESUMEN

The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Humanos , Metilación , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética
7.
Nat Rev Mol Cell Biol ; 23(5): 306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35217851
8.
Cell ; 156(1-2): 45-68, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439369

RESUMEN

Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes.


Asunto(s)
Metilación de ADN , Oxidorreductasas N-Desmetilantes/metabolismo , 5-Metilcitosina/metabolismo , Animales , Genoma , Humanos , Regiones Promotoras Genéticas
9.
Cell ; 157(4): 979-991, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813617

RESUMEN

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Asunto(s)
Metilación de ADN , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , 5-Metilcitosina/metabolismo , Animales , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Regiones Promotoras Genéticas
10.
Mol Cell ; 81(14): 2960-2974.e7, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34111398

RESUMEN

The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.


Asunto(s)
5-Metilcitosina/análogos & derivados , Regulación Alostérica/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , 5-Metilcitosina/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Desmetilación del ADN , Metilación de ADN/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica/genética
11.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352108

RESUMEN

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dioxigenasas , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH , Proteínas Proto-Oncogénicas/genética
12.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602153

RESUMEN

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Asunto(s)
Citosina/análogos & derivados , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Técnicas Genéticas , Estudio de Asociación del Genoma Completo , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , Ratones , Elementos Reguladores de la Transcripción , Factores de Transcripción p300-CBP/metabolismo
13.
Cell ; 153(3): 692-706, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602152

RESUMEN

TET dioxygenases successively oxidize 5-methylcytosine (5mC) in mammalian genomes to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC/5caC can be excised and repaired to regenerate unmodified cytosines by thymine-DNA glycosylase (TDG) and base excision repair (BER) pathway, but it is unclear to what extent and at which part of the genome this active demethylation process takes place. Here, we have generated genome-wide distribution maps of 5hmC/5fC/5caC using modification-specific antibodies in wild-type and Tdg-deficient mouse embryonic stem cells (ESCs). In wild-type mouse ESCs, 5fC/5caC accumulates to detectable levels at major satellite repeats but not at nonrepetitive loci. In contrast, Tdg depletion in mouse ESCs causes marked accumulation of 5fC and 5caC at a large number of proximal and distal gene regulatory elements. Thus, these results reveal the genome-wide view of iterative 5mC oxidation dynamics and indicate that TET/TDG-dependent active DNA demethylation process occurs extensively in the mammalian genome.


Asunto(s)
5-Metilcitosina/metabolismo , Epigénesis Genética , Técnicas Genéticas , Estudio de Asociación del Genoma Completo , Animales , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Reparación del ADN , Dioxigenasas/metabolismo , Células Madre Embrionarias , Heterocromatina/química , Heterocromatina/metabolismo , Ratones , Oxidación-Reducción , Elementos Reguladores de la Transcripción , Timina ADN Glicosilasa/metabolismo
14.
Cell ; 155(7): 1448-50, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360270

RESUMEN

TET-mediated 5-methyl cytosine (5mC) oxidation acts in epigenetic regulation, stem cell development, and cancer. Hu et al. now determine the crystal structure of the TET2 catalytic domain bound to DNA, shedding light on 5mC-DNA substrate recognition and the catalytic mechanism of 5mC oxidation.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Dioxigenasas , Humanos
15.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23434322

RESUMEN

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Asunto(s)
5-Metilcitosina/análisis , Citosina/análogos & derivados , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Citosina/análisis , Citosina/metabolismo , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Factor 4 Similar a Kruppel , Espectrometría de Masas , Ratones , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción del Factor Regulador X , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Cell ; 154(2): 311-324, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23830207

RESUMEN

Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22 enhances mammary gland side-branching, expands the stem cell compartment, and promotes tumor development. Critically, miR-22 promotes aggressive metastatic disease in MMTV-miR-22 TG mice, as well as compound MMTV-neu or -PyVT-miR-22 TG mice. We demonstrate that miR-22 exerts its metastatic potential by silencing antimetastatic miR-200 through direct targeting of the TET (Ten eleven translocation) family of methylcytosine dioxygenases, thereby inhibiting demethylation of the mir-200 promoter. Finally, we show that miR-22 overexpression correlates with poor clinical outcomes and silencing of the TET-miR-200 axis in patients. Taken together, our findings implicate miR-22 as a crucial epigenetic modifier and promoter of EMT and breast cancer stemness toward metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Ensamble y Desensamble de Cromatina , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Neoplasias de la Mama/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Humanos , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Trasplante Heterólogo
17.
Cell ; 155(7): 1545-55, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24315485

RESUMEN

TET proteins oxidize 5-methylcytosine (5mC) on DNA and play important roles in various biological processes. Mutations of TET2 are frequently observed in myeloid malignance. Here, we present the crystal structure of human TET2 bound to methylated DNA at 2.02 Å resolution. The structure shows that two zinc fingers bring the Cys-rich and DSBH domains together to form a compact catalytic domain. The Cys-rich domain stabilizes the DNA above the DSBH core. TET2 specifically recognizes CpG dinucleotide and shows substrate preference for 5mC in a CpG context. 5mC is inserted into the catalytic cavity with the methyl group orientated to catalytic Fe(II) for reaction. The methyl group is not involved in TET2-DNA contacts so that the catalytic cavity allows TET2 to accommodate 5mC derivatives for further oxidation. Mutations of Fe(II)/NOG-chelating, DNA-interacting, and zinc-chelating residues are frequently observed in human cancers. Our studies provide a structural basis for understanding the mechanisms of TET-mediated 5mC oxidation.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Islas de CpG , Cristalografía por Rayos X , Metilación de ADN , Dioxigenasas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Zinc/metabolismo
18.
Cell ; 153(4): 773-84, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663777

RESUMEN

5-methylcytosine is a major epigenetic modification that is sometimes called "the fifth nucleotide." However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo's methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.


Asunto(s)
Metilación de ADN , Embrión no Mamífero/metabolismo , Oocitos/metabolismo , Espermatozoides/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , 5-Metilcitosina/análisis , Animales , Epigénesis Genética , Femenino , Células Germinativas/metabolismo , Masculino , Pez Cebra/metabolismo
19.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
20.
Nat Immunol ; 16(6): 653-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867473

RESUMEN

The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Asunto(s)
Linfocitos B/fisiología , Citosina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Linfoma de Células B/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Inestabilidad Cromosómica , Citosina/metabolismo , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Exoma/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA