RESUMEN
PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.
Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genéticaRESUMEN
OBJECTIVES: A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS: Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS: We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS: The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Asunto(s)
Diferenciación Celular , Factores de Transcripción de Tipo Kruppel , Odontoblastos , Odontoblastos/metabolismo , Humanos , Diferenciación Celular/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción Sp/genética , Factores de Transcripción Sp/metabolismo , Dentina/metabolismo , Odontogénesis/genética , Odontogénesis/fisiologíaRESUMEN
The Sp-family genes encode important transcription factors in animal development. Here we investigate the embryonic expression patterns of the complete set of Sp-genes in the velvet worm Euperipatoides kanangrensis (Onychophora), with a special focus on the Sp6-9 ortholog. In arthropods, Sp6-9, the ortholog of the Drosophila melanogaster D-Sp1 gene plays a conserved role in appendage development. Our data show that the expression of Sp6-9 during the development of the velvet worm is conserved, suggesting that the key function of the Sp6-9 gene dates back to at least the last common ancestor of arthropods and onychophorans and thus likely the last common ancestor of Panarthropoda.
Asunto(s)
Tipificación del Cuerpo/genética , Invertebrados/embriología , Invertebrados/genética , Factores de Transcripción Sp/genética , Factores de Transcripción Sp/metabolismo , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Filogenia , Dedos de ZincRESUMEN
Long non-coding RNAs (lncRNAs) are a class of regulatory noncoding RNAs. Emerging evidence highlights the critical roles of lncRNAs in the progression of hepatocellular carcinoma (HCC). Although many lncRNAs have been identified in the development of HCC, the association between DiGeorge syndrome critical region gene 5 (DGCR5) and HCC remains unclear. In the current study, we focused on the biological role of DGCR5 in HCC. We observed that DGCR5 was decreased in HCC cells, including SMCC7721, Hep3B, HepG2, MHCC-97L, MHCC-97H, and SNU449 hepatocellular carcinoma cells, compared with the normal human liver cell line THLE-3 normal human liver cells. In addition, DGCR5 overexpression could repress HCC cell growth, migration, and invasion considerably. Increasing studies have indicated the interactions between lncRNAs and microRNAs. MicroRNAs are endogenous small noncoding RNAs and they can play important roles in tumorigenesis. MicroRNA 346 (miR-346) has been demonstrated in various human cancer types, including HCC. MiR-346 was found to be increased in HCC cells and DGCR5 can act as a sponge of miR-346 to modulate the progression of HCC. The binding correlation between DGCR5 and miR-346 was validated in our research. Subsequently, Krüppel-like factor 14 (KLF14) was predicted as a downstream target of miR-346 and miR-346 can induce the development of HCC by inhibiting KLF14. Finally, we proved that DGCR5 can rescue the inhibited levels of KLF14 repressed by miR-346 mimics in MHCC-97H and Hep3B cells. Taken together, it was indicated in our study that DGCR5 can restrain the progression of HCC through sponging miR-346 and modulating KLF14 in vitro.
Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Factores de Transcripción Sp/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Factores de Transcripción de Tipo Kruppel , Neoplasias Hepáticas/patologíaRESUMEN
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Asunto(s)
Enfermedades del Sistema Digestivo/metabolismo , Sistema Digestivo/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción Sp/metabolismo , Animales , Sistema Digestivo/patología , Sistema Digestivo/fisiopatología , Enfermedades del Sistema Digestivo/genética , Enfermedades del Sistema Digestivo/patología , Enfermedades del Sistema Digestivo/fisiopatología , Regulación de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Transducción de Señal , Factores de Transcripción Sp/genéticaRESUMEN
Long noncoding RNAs (lncRNAs) represent a novel type of noncoding RNAs of over 200 nucleotides, characterized by no or limited protein-coding potential. Although the function of lncRNAs attracts increasing attention recently, the relationship between lncRNA and colorectal cancer (CRC) remains further investigation. In our study, we found that lncRNA HAND2-AS1 was markedly downregulated in CRC tissues. And its expression level was negatively correlated with metastasis and advanced stage in CRC patients. Furthermore, we showed that HAND2-AS1 low expression predicted poor prognosis. Functionally, we found that overexpression of HAND2-AS1 obviously attenuated the proliferation and invasion of CRC cells. Ectopic expression of HAND2-AS1 also inhibited tumor propagation in vivo. In mechanism, HAND2-AS1 served as a sponge of miR-1275 which targeted KLF14. Through facilitating KLF14 expression, HAND2-AS1 suppressed CRC progression. In conclusion, our study demonstrated that HAND2-AS1 exerts a suppressive role in CRC by sponging miR-1275 and modulating KLF14 expression.
Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción Sp/biosíntesis , Animales , Proliferación Celular , Células Cultivadas , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Humanos , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , ARN Largo no Codificante/genética , Factores de Transcripción Sp/genética , Factores de Transcripción Sp/metabolismo , Regulación hacia ArribaRESUMEN
Improving accuracy of the available predictive DNA methods is important for their wider use in routine forensic work. Information on age in the process of identification of an unknown individual may provide important hints that can speed up the process of investigation. DNA methylation markers have been demonstrated to provide accurate age estimation in forensics, but there is growing evidence that DNA methylation can be modified by various factors including diseases. We analyzed DNA methylation profile in five markers from five different genes (ELOVL2, C1orf132, KLF14, FHL2, and TRIM59) used for forensic age prediction in three groups of individuals with diagnosed medical conditions. The obtained results showed that the selected age-related CpG sites have unchanged age prediction capacity in the group of late onset Alzheimer's disease patients. Aberrant hypermethylation and decreased prediction accuracy were found for TRIM59 and KLF14 markers in the group of early onset Alzheimer's disease suggesting accelerated aging of patients. In the Graves' disease patients, altered DNA methylation profile and modified age prediction accuracy were noted for TRIM59 and FHL2 with aberrant hypermethylation observed for the former and aberrant hypomethylation for the latter. Our work emphasizes high utility of the ELOVL2 and C1orf132 markers for prediction of chronological age in forensics by showing unchanged prediction accuracy in individuals affected by three diseases. The study also demonstrates that artificial neural networks could be a convenient alternative for the forensic predictive DNA analyses.
Asunto(s)
Acetiltransferasas/genética , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Metilación de ADN , Enfermedad de Graves/genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Niño , Preescolar , Islas de CpG/genética , Elongasas de Ácidos Grasos , Femenino , Genética Forense , Marcadores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Factores de Transcripción de Tipo Kruppel , Proteínas con Homeodominio LIM/genética , Masculino , Proteínas de la Membrana/genética , Metaloproteínas/genética , Persona de Mediana Edad , Análisis Multivariante , Proteínas Musculares/genética , Redes Neurales de la Computación , Factores de Transcripción Sp/genética , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos , Adulto JovenRESUMEN
Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.
Asunto(s)
Inmunidad Celular/genética , Factores de Transcripción Sp/genética , Factor de Transcripción Sp3/genética , Receptor Toll-Like 5/biosíntesis , Acetilación/efectos de los fármacos , Animales , Butiratos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Flagelina/farmacología , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Inmunidad Celular/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción Sp/metabolismo , Factor de Transcripción Sp3/metabolismo , Receptor Toll-Like 5/genética , Factores de Transcripción p300-CBP/genéticaRESUMEN
The antineoplastic agent benzyl isothiocyanate (BITC) acts by targeting multiple pro-oncogenic pathways/genes, including signal transducer and activator of transcription 3 (STAT3); however, the mechanism of action is not well known. As reported previously, BITC induced reactive oxygen species (ROS) in Panc1, MiaPaCa2, and L3.6pL pancreatic cancer cells. This was accompanied by induction of apoptosis and inhibition of cell growth and migration, and these responses were attenuated in cells cotreated with BITC plus glutathione (GSH). BITC also decreased expression of specificity proteins (Sp) Sp1, Sp3, and Sp4 transcription factors (TFs) and several pro-oncogenic Sp-regulated genes, including STAT3 and phospho-STAT3 (pSTAT3), and GSH attenuated these responses. Knockdown of Sp TFs by RNA interference also decreased STAT3/pSTAT3 expression. BITC-induced ROS activated a cascade of events that included down-regulation of c-Myc, and it was also demonstrated that c-Myc knockdown decreased expression of Sp TFs and STAT3 These results demonstrate that in pancreatic cancer cells, STAT3 is an Sp-regulated gene that can be targeted by BITC and other ROS inducers, thereby identifying a novel therapeutic approach for targeting STAT3.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factores de Transcripción Sp/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/uso terapéutico , Factores de Transcripción Sp/genética , Factores de Transcripción Sp/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Carcinoma Medular/genética , Supervivencia Celular/genética , Cromosomas Humanos Par 7 , Regulación Neoplásica de la Expresión Génica , Impresión Genómica , Pérdida de Heterocigocidad , Neoplasias de la Tiroides/genética , Proteínas Reguladoras de la Apoptosis , Proteína Similar al Receptor de Calcitonina/genética , Carcinoma Medular/patología , Proliferación Celular/genética , Proteína Coatómero/genética , Metilación de ADN , Proteínas de Unión al ADN , Proteína Adaptadora GRB10/genética , Humanos , Factores de Transcripción de Tipo Kruppel , Proteínas/genética , Proteínas de Unión al ARN , Factores de Transcripción Sp/genética , Glándula Tiroides/patología , Neoplasias de la Tiroides/patologíaRESUMEN
AIMS/HYPOTHESIS: Epidemiological studies in Pima Indians identified elevated levels of HDL-cholesterol (HDL-C) as a protective factor against type 2 diabetes risk in women. We assessed whether HDL-C-associated single-nucleotide polymorphisms (SNPs) also associate with type 2 diabetes in female Pima Indians. METHODS: Twenty-one SNPs in established HDL-C loci were initially analysed in 2,675 full-heritage Pima Indians. SNPs shown to associate with HDL-C (12 SNPs) were assessed for association with type 2 diabetes in 7,710 Pima Indians (55.6% female sex). The CETP locus provided the strongest evidence for association with HDL-C and was further interrogated by analysing tag SNPs. RESULTS: Twelve of the 21 SNPs analysed had a significant association with HDL-C in Pima Indians; five SNPs representing four loci (CETP, DOCK6, PPP1R3B and ABCA1) reached genome-wide significance. Three SNPs, at CETP, KLF14 and HNF4A, associated with type 2 diabetes only in female participants with the HDL-C-lowering allele increasing diabetes risk (p values: 3.2 × 10(-4) to 7.7 × 10(-5)); the association remained significant even after adjustment for HDL-C. Additional analysis across CETP identified rs6499863 as having the strongest association with type 2 diabetes in female participants (p = 5.0 × 10(-6)) and this association remained independent of the HDL-C association. CONCLUSIONS/INTERPRETATION: SNPs at the CETP, HNF4A and KLF14 locus are associated with HDL-C levels and type 2 diabetes (in female participants). However, since HNF4A and KLF14 are established loci for type 2 diabetes, it is unlikely that HDL-C solely mediates these associations.
Asunto(s)
HDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Proteínas de Transferencia de Ésteres de Colesterol/genética , HDL-Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Indígenas Norteamericanos/genética , Factores de Transcripción de Tipo Kruppel , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores Sexuales , Factores de Transcripción Sp/genética , Adulto JovenRESUMEN
Specificity protein (Sp) belong to a transcription factor family that contains nine subgroups with essential functions in development, including skeletogenesis, tooth development, neural tube closure, and limb formation. In molluscs, functions of the Sp protein family members have not been reported in detail. In this study, we report the first Sp protein-encoding gene in Pinctada fucata. We named the translated protein Pf-Sp8/9, based on the phylogenetic development tree constructed using Sp protein sequences from six model organisms, which showed that it was a Sp8/9 homolog. Alignment of the Pf-Sp8/9 sequence with the amino acid sequences of related proteins showed that Pf-Sp8/9 had conserved domains, including three DNA-binding motifs. The tissue distribution showed that while Pf-Sp8/9 mRNA expression was detected in all tested tissues, it was particularly high in the mantle. The luciferase reporter assay results showed that Pf-Sp8/9 had the ability to activate the transcription of a number of matrix proteins. The expression pattern of Pf-Sp8/9 during P. fucata pearl sac development was similar to that of some genes that encode matrix proteins, suggesting Pf-Sp8/9 may be involved in mantle-related physiological activities and biomineralization.
Asunto(s)
Calcificación Fisiológica , Pinctada/química , Factores de Transcripción Sp/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de la Matriz Extracelular/genética , Filogenia , Pinctada/metabolismo , Alineación de Secuencia , Factores de Transcripción Sp/genética , Activación TranscripcionalRESUMEN
Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.
Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Metabolismo de los Lípidos/fisiología , Transducción de Señal/fisiología , Factores de Transcripción Sp/metabolismo , Animales , Cromatina/metabolismo , Células Endoteliales/citología , Epigénesis Genética/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Hígado/citología , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factores de Transcripción Sp/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Activación Transcripcional/fisiologíaRESUMEN
The antidiabetic drug metformin exhibits both chemopreventive and chemotherapeutic activity for multiple cancers including pancreatic cancer; however, the underlying mechanism of action of metformin is unclear. A recent study showed that metformin down-regulated specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells and tumors, and this was accompanied by down-regulation of several pro-oncogenic Sp-regulated genes. Treatment with metformin or down-regulation of Sp TFs by RNAi also inhibits two major pro-oncogenic pathways in pancreatic cancer cells, namely mammalian target of rapamycin (mTOR) signaling and epidermal growth factor (EGFR)-dependent activation of Ras. Metformin and Sp knockdown by RNAi decreased expression of the insulin-like growth factor-1 receptor (IGF-1R), resulting in inhibition of mTOR signaling. Ras activity was also decreased by metformin and Sp knockdown of EGFR, another Sp-regulated gene. Thus, the antineoplastic activities of metformin in pancreatic cancer are due, in part, to down-regulation of Sp TFs and Sp-regulated IGF-1R and EGFR, which in turn results in inhibition of mTOR and Ras signaling, respectively.
Asunto(s)
Antineoplásicos/farmacología , Metformina/farmacología , Neoplasias Pancreáticas/genética , Factores de Transcripción Sp/genética , Serina-Treonina Quinasas TOR/genética , Proteínas ras/genética , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Factores de Transcripción Sp/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo , Neoplasias PancreáticasRESUMEN
Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation of Sp transcription factors. Treatment of Panc1, L3.6pL and Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, survivin, cyclin D1, vascular endothelial growth factor and its receptor, and fatty acid synthase. Metformin induced proteasome-dependent degradation of Sps in L3.6pL and Panc28 cells, whereas in Panc1 cells metformin decreased microRNA-27a and induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 by metformin was phosphatase dependent. Metformin also inhibited pancreatic tumor growth and downregulated Sp1, Sp3 and Sp4 in tumors in an orthotopic model where L3.6pL cells were injected directly into the pancreas. The results demonstrate for the first time that the anticancer activities of metformin are also due, in part, to downregulation of Sp transcription factors and Sp-regulated genes.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Metformina/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Factores de Transcripción Sp/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción Sp/metabolismoRESUMEN
FIAT (factor inhibiting ATF4-mediated transcription) represses Osteocalcin gene transcription and inhibits osteoblast activity by heterodimerizing with ATF4 to prevent it from binding DNA. It thus appears important to identify and characterize the molecular mechanisms that control Fiat gene expression in osteoblasts. In silico sequence analysis identified a canonical GC-box within a 1,400 bp region of the proximal Fiat gene promoter. Electrophoretic mobility shift assays (EMSA) with MC3T3-E1 osteoblastic cells nuclear extracts indicated that the transcription factors Sp1 and Sp3, but not Sp7/OSTERIX, bound this proximal GC-box. Chromatin immunoprecipitation confirmed interaction of the two transcription factors with the Fiat promoter GC-element in living osteoblasts. Transient transfection studies showed that Sp1 dose-dependently activated the expression of a Fiat-luciferase reporter construct while both the long or short isoforms of Sp3 dose-dependently inhibited transcription from the Fiat reporter construct. Transfection of an Sp7/OSTERIX expression vector did not affect expression of the Fiat-luciferase reporter. Co-transfection of increasing amounts of the Sp3 expression vector in the context of maximal Sp1-dependent Fiat-luciferase activation led to dose-dependent repression of the expression of the reporter. Using RNA knockdown, we measured a reduction in steady-state Fiat expression when Sp1 was inhibited, and a reciprocal increase upon Sp3 knockdown. In parallel, treatment of osteoblasts with WP631, which prevents Sp1/DNA interactions, strongly inhibited the expression of Fiat and reduced the occupancy of the Fiat promoter proximal GC-box by Sp1. Taken together, our results suggest an interplay between Sp1 and Sp3 as a mechanism involved in the control of Fiat gene expression in osteoblasts.
Asunto(s)
Proteínas Co-Represoras/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Elementos de Respuesta/fisiología , Factores de Transcripción Sp/metabolismo , Animales , Línea Celular , Proteínas Co-Represoras/genética , Ratones , Proteínas Nucleares/genética , Osteoblastos/citología , Factores de Transcripción Sp/genéticaRESUMEN
Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c-MET, insulin-like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp-regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Factores de Transcripción Sp/metabolismo , ortoaminobenzoatos/farmacología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Humanos , Ratones , Ratones Desnudos , Músculos/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Interferencia de ARN , ARN Interferente Pequeño , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores CXCR4/genética , Receptores de Somatomedina/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Factores de Transcripción Sp/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark is cytotoxic to cancer cells. There is evidence that specificity proteins (Sps), such as Sp1, Sp3, and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. The objective of this study was to determine the efficacy of BA in decreasing the Sps expression and underlying mechanisms. Results show that BA decreased proliferation and induced apoptosis of estrogen-receptor-negative breast cancer MDA-MB-231 cells. The BA-induced Sp1, Sp3, and Sp4 downregulation was accompanied by increased zinc finger ZBTB10 expression, a putative Sp-repressor and decreased microRNA-27a levels, a microRNA involved in the regulation of ZBTB10. Similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. BA induced cell cycle arrest in the G2/M phase and increased Myt-1 mRNA (a microRNA-27a target gene), which causes inhibition in G2/M by phosphorylation of cdc2. The effects of BA were reversed by transient transfection with a mimic of microRNA-27a. In nude mice with xenografted MDA-MB-231 cells, tumor size and weight were significantly decreased by BA treatment. In tumor tissue, ZBTB10 mRNA was increased while mRNA and protein of Sp1, Sp3 and Sp4, as well as mRNA of vascular endothelial growth factor receptor (VEGFR), survivin and microRNA-27a were decreased by BA. In lungs of xenografted mice, human ß2-microglobulin mRNA was decreased in BA-treated animals. These results show that the anticancer effects of BA are at least in part based on interactions with the microRNA-27a-ZBTB10-Sp-axis causing increased cell death.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , MicroARNs/genética , Proteínas Represoras/genética , Factores de Transcripción Sp/metabolismo , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , MicroARNs/metabolismo , Triterpenos Pentacíclicos , Receptores de Estrógenos/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción Sp/genética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido BetulínicoRESUMEN
Expression of hypophysiotropic TRH, that controls thyroid axis activity, is increased by cold exposure; this effect is mimicked in rat hypothalamic cells incubated with norepinephrine or cAMP analogs. TRH proximal promoter contains three putative CRE: Site-4 or CRE-1 that overlaps an element recognized by thyroid hormone receptors, CRE-2 with adjacent sequences GC box or CACCC recognized by Sp/Krüppel factors (extended CRE-2), and AP-1 sites flanking a GRE(1/2). To evaluate the role of each element in the cAMP response, these sites were mutated or deleted in rat TRH promoter linked to luciferase gene (TRH-luc) and co-transfected with ß-gal expression vector in various cell lines; C6 cells gave the highest response to forskolin. Basal activity was most affected by mutations or deletion of CRE-2 site, or CACCC (50-75% of wild type-WT). Forskolin-induced 3× stimulation in WT which decreased 25% with CRE-1 or AP-1 deletions, but 50% when CRE-2 or its 5' adjacent GC box was altered. SH-SY5Y cells co-transfected with CREB-expression vector increased dB-cAMP response in the wild type but not in the CRE-2 mutated plasmid; cotransfecting CREB-A (a dominant negative expression vector) strongly diminished basal or cAMP response. Primary cultures of hypothalamic cells transfected with plasmids containing deletions of CRE-1, CRE-2, or extended CRE-2 failed to respond to forskolin when CRE-2 was modified. These results corroborate the CRE-2 site as the main cAMP-response element of rat TRH promoter, not exclusive of transcription factors of hypothalamic cells, and stress the relevance of adjacent Sp-1 sites, important mediators of some metabolic hormones.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , AMP Cíclico/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Elementos de Respuesta/genética , Factores de Transcripción Sp/genética , Hormona Liberadora de Tirotropina/genética , Transcripción Genética/efectos de los fármacos , Animales , Secuencia de Bases , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Mutación Puntual/genética , Ratas , TransfecciónRESUMEN
CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and µ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation.