Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.523
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 247-272, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001136

RESUMEN

The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.


Asunto(s)
Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fosforilación
2.
Proc Natl Acad Sci U S A ; 121(23): e2401458121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809711

RESUMEN

Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two ß-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.


Asunto(s)
Amiloide , Insulina , Humanos , Amiloide/química , Amiloide/metabolismo , Insulina/química , Insulina/metabolismo , Modelos Moleculares , Interacciones Hidrofóbicas e Hidrofílicas , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Conformación Proteica , Espectroscopía de Resonancia Magnética
3.
Pharmacol Rev ; 74(4): 962-983, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36779351

RESUMEN

Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.


Asunto(s)
Diabetes Mellitus , Insulina , Nanopartículas , Animales , Glucemia , Diabetes Mellitus/tratamiento farmacológico , Glucosa/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/química , Insulina/uso terapéutico , Insulina Regular Humana/uso terapéutico , Nanopartículas/química
4.
Mol Pharm ; 21(4): 2025-2033, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525800

RESUMEN

Insulin aggregation poses a significant problem in pharmacology and medicine as it occurs during prolonged storage of the hormone and in vivo at insulin injection sites. We have recently shown that dominant forces driving the self-assembly of insulin fibrils are likely to arise from intermolecular interactions involving the N-terminal segment of the A-chain (ACC1-13). Here, we study how proline substitutions within the pilot GIVEQ sequence of this fragment affect its propensity to aggregate in both neutral and acidic environments. In a reasonable agreement with in silico prediction based on the Cordax algorithm, proline substitutions at positions 3, 4, and 5 turn out to be very effective in preventing aggregation according to thioflavin T-fluorescence-based kinetic assay, infrared spectroscopy, and atomic force microscopy (AFM). Since the valine and glutamate side chains within this segment are strongly involved in the interactions with the insulin receptor, we have focused on the possible implications of the Q → P substitution for insulin's stability and interactions with the receptor. To this end, comparative molecular dynamics (MD) simulations of the Q5P mutant and wild-type insulin were carried out for both free and receptor-bound (site 1) monomers. The results point to a mild destabilization of the mutant vis à vis the wild-type monomer, as well as partial preservation of key contacts in the complex between Q5P insulin and the receptor. We discuss the implications of these findings in the context of the design of aggregation-resistant insulin analogues retaining hormonal activity.


Asunto(s)
Amiloide , Insulina , Insulina/química , Prolina , Péptidos , Insulina Regular Humana
5.
Biomacromolecules ; 25(5): 3131-3140, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38554085

RESUMEN

The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.


Asunto(s)
Carragenina , Hidrogeles , Polisacáridos , Carragenina/química , Carragenina/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Alcohol Polivinílico/química , Reactivos de Enlaces Cruzados/química , Ratas , Metacrilatos/química , Metacrilatos/farmacología , Supervivencia Celular/efectos de los fármacos , Insulina/química , Insulina/metabolismo
6.
J Pept Sci ; 30(2): e3542, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37697741

RESUMEN

Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.


Asunto(s)
Insulina , Lactamas , Humanos , Insulina/química , Calidad de Vida , Cistina , Disulfuros/química
7.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757742

RESUMEN

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Asunto(s)
Insulina , Agregado de Proteínas , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Humanos , Insulina/metabolismo , Insulina/química , Agregado de Proteínas/efectos de los fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Amiloide/química , Amiloide/metabolismo
8.
Nature ; 556(7699): 122-125, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512653

RESUMEN

The insulin receptor is a dimeric protein that has a crucial role in controlling glucose homeostasis, regulating lipid, protein and carbohydrate metabolism, and modulating brain neurotransmitter levels. Insulin receptor dysfunction has been associated with many diseases, including diabetes, cancer and Alzheimer's disease. The primary sequence of the receptor has been known since the 1980s, and is composed of an extracellular portion (the ectodomain, ECD), a single transmembrane helix and an intracellular tyrosine kinase domain. Binding of insulin to the dimeric ECD triggers auto-phosphorylation of the tyrosine kinase domain and subsequent activation of downstream signalling molecules. Biochemical and mutagenesis data have identified two putative insulin-binding sites, S1 and S2. The structures of insulin bound to an ECD fragment containing S1 and of the apo ectodomain have previously been reported, but details of insulin binding to the full receptor and the signal propagation mechanism are still not understood. Here we report single-particle cryo-electron microscopy reconstructions of the 1:2 (4.3 Å) and 1:1 (7.4 Å) complexes of the insulin receptor ECD dimer with insulin. The symmetrical 4.3 Å structure shows two insulin molecules per dimer, each bound between the leucine-rich subdomain L1 of one monomer and the first fibronectin-like domain (FnIII-1) of the other monomer, and making extensive interactions with the α-subunit C-terminal helix (α-CT helix). The 7.4 Å structure has only one similarly bound insulin per receptor dimer. The structures confirm the binding interactions at S1 and define the full S2 binding site. These insulin receptor states suggest that recruitment of the α-CT helix upon binding of the first insulin changes the relative subdomain orientations and triggers downstream signal propagation.


Asunto(s)
Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Multimerización de Proteína , Receptor de Insulina/química , Receptor de Insulina/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Receptor de Insulina/metabolismo , Transducción de Señal , Imagen Individual de Molécula
9.
Nature ; 560(7716): 107-111, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022165

RESUMEN

Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in ß-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.


Asunto(s)
Exocitosis , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Tejido Linfoide/metabolismo , Fragmentos de Péptidos/metabolismo , Adulto , Animales , Presentación de Antígeno/inmunología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Epítopos/inmunología , Exocitosis/efectos de los fármacos , Femenino , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/sangre , Insulina/química , Insulina/inmunología , Islotes Pancreáticos/efectos de los fármacos , Tejido Linfoide/citología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Masculino , Ratones Endogámicos NOD , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
10.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290145

RESUMEN

Insulin-signaling requires conformational change: whereas the free hormone and its receptor each adopt autoinhibited conformations, their binding leads to structural reorganization. To test the functional coupling between insulin's "hinge opening" and receptor activation, we inserted an artificial ligand-dependent switch into the insulin molecule. Ligand-binding disrupts an internal tether designed to stabilize the hormone's native closed and inactive conformation, thereby enabling productive receptor engagement. This scheme exploited a diol sensor (meta-fluoro-phenylboronic acid at GlyA1) and internal diol (3,4-dihydroxybenzoate at LysB28). The sensor recognizes monosaccharides (fructose > glucose). Studies of insulin-signaling in human hepatoma-derived cells (HepG2) demonstrated fructose-dependent receptor autophosphorylation leading to appropriate downstream signaling events, including a specific kinase cascade and metabolic gene regulation (gluconeogenesis and lipogenesis). Addition of glucose (an isomeric ligand with negligible sensor affinity) did not activate the hormone. Similarly, metabolite-regulated signaling was not observed in control studies of 1) an unmodified insulin analog or 2) an analog containing a diol sensor without internal tethering. Although secondary structure (as probed by circular dichroism) was unaffected by ligand-binding, heteronuclear NMR studies revealed subtle local and nonlocal monosaccharide-dependent changes in structure. Insertion of a synthetic switch into insulin has thus demonstrated coupling between hinge-opening and allosteric holoreceptor signaling. In addition to this foundational finding, our results provide proof of principle for design of a mechanism-based metabolite-responsive insulin. In particular, replacement of the present fructose sensor by an analogous glucose sensor may enable translational development of a "smart" insulin analog to mitigate hypoglycemic risk in diabetes therapy.


Asunto(s)
Insulina/química , Western Blotting , Fructosa/química , Fructosa/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Ligandos , Modelos Moleculares , Conformación Proteica , Transducción de Señal
11.
EMBO J ; 38(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30796049

RESUMEN

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi-omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP-saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA-approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short-lived mitochondrial mutant animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/prevención & control , Xantina/administración & dosificación , Xantina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Insulina/química , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Metaboloma , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteoma , Transcriptoma
12.
Chembiochem ; 24(24): e202300470, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37800626

RESUMEN

Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.


Asunto(s)
Biología , Insulina , Insulina/química
13.
Bioconjug Chem ; 34(3): 518-528, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36756787

RESUMEN

Chemical modification of peptides and proteins, such as PEGylation and lipidation, creates conjugates with new properties. However, they are typically not dynamic or stimuli-responsive. Self-assembly controlled by a stimulus will allow adjusting properties directly. Here, we report that conjugates of oligogalacturonic acids (OGAs), isolated from plant-derived pectin, are Ca2+-responsive. We report the conjugation of OGA to human insulin (HI) to create new glyco-insulins. In addition, we coupled OGA to model peptides. We studied their self-assembly by dynamic light scattering, small-angle X-ray scattering, and circular dichroism, which showed that the self-assembly to form nanostructures depended on the length of the OGA sequence and Zn2+ and Ca2+ concentrations. Subcutaneous administration of OGA12-HI with Zn2+ showed a stable decrease in blood glucose over a longer period of time compared to HI, despite the lower receptor binding affinity.


Asunto(s)
Insulina , Péptidos , Humanos , Glucemia , Dicroismo Circular , Insulina/química , Péptidos/química , Calcio/metabolismo
14.
Bioconjug Chem ; 34(1): 212-217, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36534758

RESUMEN

Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.


Asunto(s)
Insulina , Receptores Artificiales , Insulina/síntesis química , Insulina/química , Receptores Artificiales/química , Receptores Artificiales/metabolismo
15.
Chem Rev ; 121(8): 4531-4560, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33689304

RESUMEN

The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.


Asunto(s)
Técnicas de Química Sintética/métodos , Insulina/síntesis química , Secuencia de Aminoácidos , Animales , Humanos , Insulina/análogos & derivados , Insulina/química , Conformación Proteica
16.
J Pept Sci ; 29(12): e3529, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37403818

RESUMEN

The insulin superfamily comprises a group of peptides with diverse physiological functions and is conserved across the animal kingdom. Insulin-like peptides (ILPs) of crustaceans are classified into four major types: insulin, relaxin, gonadulin, and androgenic gland hormone (AGH)/insulin-like androgenic gland factor (IAG). Of these, the physiological functions of AGH/IAG have been clarified to be the regulation of male sex differentiation, but those of the other types have not been uncovered. In this study, we chemically synthesized Maj-ILP1, an ILP identified in the ovary of the kuruma prawn Marsupenaeus japonicus, using a combination of solid-phase peptide synthesis and regioselective disulfide bond formation reactions. As the circular dichroism spectral pattern of synthetic Maj-ILP1 is typical of other ILPs reported thus far, the synthetic peptide likely possessed the proper conformation. Functional analysis using ex vivo tissue incubation revealed that Maj-ILP1 significantly increased the expression of the yolk protein genes Maj-Vg1 and Maj-Vg2 in the hepatopancreas and Maj-Vg1 in the ovary of adolescent prawns. This is the first report on the synthesis of a crustacean ILP other than IAGs and also shows the positive relationship between the reproductive process and female-dominant ILP.


Asunto(s)
Insulina , Vitelogénesis , Animales , Femenino , Masculino , Insulina/química , Péptidos , Andrógenos
17.
Anal Bioanal Chem ; 415(10): 1829-1840, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808276

RESUMEN

The possibility to monitor peptide and protein aggregation is of paramount importance in the so-called conformational diseases, as the understanding of many physiological pathways, as well as pathological processes involved in the development of such diseases, depends very much on the actual possibility to monitor biomolecule oligomeric distribution and aggregation. In this work, we report a novel experimental method to monitor protein aggregation, based on the change of the fluorescent properties of carbon dots upon protein binding. The results obtained in the case of insulin with this newly proposed experimental approach are compared with those obtained with other common experimental techniques normally used for the same purpose (circular dichroism, DLS, PICUP and ThT fluorescence). The greatest advantage of the hereby presented methodology over all the other experimental methods considered is the possibility to monitor the initial stages of insulin aggregation under the different experimental conditions sampled and the absence of possible disturbances and/or molecular probes during the aggregation process.


Asunto(s)
Insulina , Puntos Cuánticos , Insulina/química , Carbono/química , Agregado de Proteínas , Puntos Cuánticos/química , Dicroismo Circular , Colorantes Fluorescentes/química
18.
Proc Natl Acad Sci U S A ; 117(5): 2302-2308, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31969453

RESUMEN

Water, often termed as the "lubricant of life," is expected to play an active role in navigating protein dissociation-association reactions. In order to unearth the molecular details, we first compute the free-energy surface (FES) of insulin dimer dissociation employing metadynamics simulation, and then carry out analyses of insulin dimerization and dissociation using atomistic molecular-dynamics simulation in explicit water. We select two sets of initial configurations from 1) the dissociated state and 2) the transition state, and follow time evolution using several long trajectories (∼1-2 µs). During the process we not only monitor configuration of protein monomers, but also the properties of water. Although the equilibrium structural properties of water between the two monomers approach bulklike characteristics at a separation distance of ∼5 nm, the dynamics differ considerably. The complex association process is observed to be accompanied by several structural and dynamical changes of the system, such as large-scale correlated water density fluctuations, coupled conformational fluctuation of protein monomers, a dewettinglike transition with the change of intermonomeric distance RMM from ∼4 to ∼2 nm, orientation of monomers and hydrophobic hydration in the monomers. A quasistable, solvent-shared, protein monomer pair (SSPMP) forms at around 2 nm during association process which is a local free-energy minimum having ∼50-60% of native contacts. Simulations starting with arrangements sampled from the transition state (TS) of the dimer dissociation reveal that the final outcome depends on relative orientation of the backbone in the "hotspot" region.


Asunto(s)
Proteínas/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Insulina/química , Simulación de Dinámica Molecular , Conformación Proteica , Multimerización de Proteína , Solventes/química , Termodinámica
19.
Proc Natl Acad Sci U S A ; 117(47): 29512-29517, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33177238

RESUMEN

Reduced ß-cell function and insulin deficiency are hallmarks of diabetes mellitus, which is often accompanied by the malfunction of glucagon-secreting α-cells. While insulin therapy has been developed to treat insulin deficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains inadequate. Here, we describe a transdermal patch that mimics the inherent counterregulatory effects of ß-cells and α-cells for blood glucose management by dynamically releasing insulin or glucagon. The two modules share a copolymerized matrix but comprise different ratios of the key monomers to be "dually responsive" to both hyper- and hypoglycemic conditions. In a type 1 diabetic mouse model, the hybrid patch effectively controls hyperglycemia while minimizing the occurrence of hypoglycemia in the setting of insulin therapy with simulated delayed meal or insulin overdose.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glucagón/administración & dosificación , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Animales , Glucemia/análisis , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/diagnóstico , Combinación de Medicamentos , Composición de Medicamentos/métodos , Liberación de Fármacos , Sobredosis de Droga/prevención & control , Glucagón/química , Glucagón/farmacocinética , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , Masculino , Ratones , Polimerizacion , Solubilidad , Estreptozocina , Parche Transdérmico
20.
Bioprocess Biosyst Eng ; 46(12): 1765-1776, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938390

RESUMEN

The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.


Asunto(s)
Cromatografía , Insulina , Cromatografía/métodos , Cristalización , Insulina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA