Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.296
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(7): 517-533, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38418851

RESUMEN

Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.


Asunto(s)
Tipificación del Cuerpo , Somitos , Somitos/embriología , Somitos/metabolismo , Animales , Humanos , Tipificación del Cuerpo/genética , Vertebrados/embriología , Regulación del Desarrollo de la Expresión Génica , Desarrollo Embrionario/genética , Mesodermo/metabolismo , Mesodermo/embriología , Transducción de Señal , Morfogénesis
2.
Cell ; 184(12): 3299-3317.e22, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019794

RESUMEN

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.


Asunto(s)
Corazón/embriología , Organogénesis , Organoides/embriología , Activinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Calcio/metabolismo , Línea Celular , Linaje de la Célula , Pollos , Células Endoteliales/citología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibroblastos/citología , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Masculino , Mesodermo/embriología , Modelos Biológicos , Miocardio/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/metabolismo
3.
Cell ; 184(12): 3281-3298.e22, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019796

RESUMEN

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Desarrollo Embrionario , Endodermo/embriología , Modelos Biológicos , Organoides/embriología , Factor de Transcripción CDX2/metabolismo , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/citología , Femenino , Gastrulación , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/embriología , Masculino , Mesodermo/embriología , Persona de Mediana Edad , Neurregulina-1/metabolismo , Especificidad de Órganos , Células Madre Pluripotentes/citología
4.
Cell ; 172(5): 1079-1090.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474908

RESUMEN

How signaling dynamics encode information is a central question in biology. During vertebrate development, dynamic Notch signaling oscillations control segmentation of the presomitic mesoderm (PSM). In mouse embryos, this molecular clock comprises signaling oscillations of several pathways, i.e., Notch, Wnt, and FGF signaling. Here, we directly address the role of the relative timing between Wnt and Notch signaling oscillations during PSM patterning. To this end, we developed a new experimental strategy using microfluidics-based entrainment that enables specific control of the rhythm of segmentation clock oscillations. Using this approach, we find that Wnt and Notch signaling are coupled at the level of their oscillation dynamics. Furthermore, we provide functional evidence that the oscillation phase shift between Wnt and Notch signaling is critical for PSM segmentation. Our work hence reveals that dynamic signaling, i.e., the relative timing between oscillatory signals, encodes essential information during multicellular development.


Asunto(s)
Tipificación del Cuerpo , Mesodermo/embriología , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Genes Reporteros , Mesodermo/metabolismo , Ratones , Microfluídica , Somitos/embriología , Somitos/metabolismo
5.
Genes Dev ; 38(9-10): 393-414, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38834239

RESUMEN

The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.


Asunto(s)
Endocitosis , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Animales , Mesodermo/embriología , Mesodermo/metabolismo , Transducción de Señal/genética , Endocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Desarrollo Embrionario/genética , Transporte de Proteínas , Mutación
6.
Nature ; 626(7998): 367-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092041

RESUMEN

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Hematopoyesis , Saco Vitelino , Humanos , Implantación del Embrión , Endodermo/citología , Endodermo/embriología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Mesodermo/citología , Mesodermo/embriología , Células Madre Pluripotentes Inducidas/citología , Amnios/citología , Amnios/embriología , Cuerpos Embrioides/citología , Linaje de la Célula , Biología Evolutiva/métodos , Biología Evolutiva/tendencias
7.
Nature ; 618(7965): 543-549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225983

RESUMEN

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Asunto(s)
Aletas de Animales , Evolución Biológica , Mesodermo , Pez Cebra , Animales , Aletas de Animales/anatomía & histología , Aletas de Animales/embriología , Aletas de Animales/crecimiento & desarrollo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Mesodermo/anatomía & histología , Mesodermo/embriología , Mesodermo/crecimiento & desarrollo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas Morfogenéticas Óseas/metabolismo
8.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760574

RESUMEN

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Asunto(s)
Linaje de la Célula , Células Epiteliales , Glándulas Mamarias Animales , Células Madre Mesenquimatosas , Animales , Ratones , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/metabolismo , Femenino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Diferenciación Celular , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Morfogénesis , Análisis de la Célula Individual , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/embriología
9.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
10.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742434

RESUMEN

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Asunto(s)
Receptores Notch , Somitos , Animales , Ratones , Somitos/embriología , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Tipificación del Cuerpo/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Relojes Biológicos/fisiología
11.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828908

RESUMEN

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros , Proteínas de Dominio T Box , Animales , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Esbozos de los Miembros/metabolismo , Esbozos de los Miembros/embriología , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Regulación hacia Arriba/genética , Tipificación del Cuerpo/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Mesodermo/embriología
12.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683880

RESUMEN

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Asunto(s)
Drosophila melanogaster , Ectodermo , Gastrulación , Mesodermo , Miosina Tipo II , Animales , Mesodermo/embriología , Mesodermo/citología , Gastrulación/fisiología , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriología , Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Morfogénesis , Tipificación del Cuerpo/fisiología , Drosophila/embriología
13.
Nature ; 595(7865): 85-90, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33981037

RESUMEN

The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Mutación , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Células Clonales/citología , Células Clonales/metabolismo , Análisis Mutacional de ADN , Feto/citología , Feto/embriología , Feto/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Salud , Sistema Hematopoyético/citología , Humanos , Cariotipificación , Masculino , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Tasa de Mutación , Especificidad de Órganos/genética , Factores de Tiempo , Secuenciación Completa del Genoma , Flujo de Trabajo
14.
Nat Rev Mol Cell Biol ; 15(11): 709-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25335437

RESUMEN

Segmentation of the paraxial mesoderm is a major event of vertebrate development that establishes the metameric patterning of the body axis. This process involves the periodic formation of sequential units, termed somites, from the presomitic mesoderm. Somite formation relies on a molecular oscillator, the segmentation clock, which controls the rhythmic activation of several signalling pathways and leads to the oscillatory expression of a subset of genes in the presomitic mesoderm. The response to the periodic signal of the clock, leading to the establishment of the segmental pre-pattern, is gated by a system of travelling signalling gradients, often referred to as the wavefront. Recent studies have advanced our understanding of the molecular mechanisms involved in the generation of oscillations and how they interact and are coordinated to activate the segmental gene expression programme.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Transducción de Señal , Vertebrados/metabolismo , Animales , Relojes Biológicos/genética , Tipificación del Cuerpo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Humanos , Mesodermo/citología , Mesodermo/embriología , Modelos Biológicos , Receptores Notch/genética , Receptores Notch/metabolismo , Vertebrados/embriología , Vertebrados/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
15.
Nature ; 566(7745): 496-502, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787437

RESUMEN

Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single experiment. The resulting 'mouse organogenesis cell atlas' (MOCA) provides a global view of developmental processes during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes. We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of the apical ectodermal ridge, limb mesenchyme and skeletal muscle.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Organogénesis/genética , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Marcadores Genéticos , Masculino , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Especificidad de Órganos/genética , Análisis de Secuencia de ARN , Factores de Tiempo
16.
Nature ; 576(7787): 487-491, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827285

RESUMEN

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes1-5. Global epigenetic reprogramming accompanies these changes6-8, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Gástrula/citología , Gástrula/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Análisis de la Célula Individual , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Desmetilación , Cuerpos Embrioides/citología , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Elementos de Facilitación Genéticos/genética , Epigenoma/genética , Eritropoyesis , Análisis Factorial , Gástrula/embriología , Gastrulación/fisiología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN/análisis , Factores de Tiempo , Dedos de Zinc
17.
Nature ; 566(7745): 490-495, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787436

RESUMEN

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Gastrulación , Organogénesis , Análisis de la Célula Individual , Animales , Linaje de la Célula/genética , Quimera/embriología , Quimera/genética , Quimera/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Endotelio/citología , Endotelio/embriología , Endotelio/metabolismo , Femenino , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Mutación/genética , Células Mieloides/citología , Organogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Proteína 1 de la Leucemia Linfocítica T Aguda/deficiencia , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101917

RESUMEN

In warm-blooded vertebrate embryos (mammals and birds), the axial tissues of the body form from a growth zone at the tail end, Hensen's node, which generates neural, mesodermal, and endodermal structures along the midline. While most cells only pass through this region, the node has been suggested to contain a small population of resident stem cells. However, it is unknown whether the rest of the node constitutes an instructive niche that specifies this self-renewal behavior. Here, we use heterotopic transplantation of groups and single cells and show that cells not destined to enter the node can become resident and self-renew. Long-term resident cells are restricted to the posterior part of the node and single-cell RNA-sequencing reveals that the majority of these resident cells preferentially express G2/M phase cell-cycle-related genes. These results provide strong evidence that the node functions as a niche to maintain self-renewal of axial progenitors.


Asunto(s)
Tipificación del Cuerpo/fisiología , Organizadores Embrionarios/fisiología , Nicho de Células Madre/fisiología , Animales , Embrión de Pollo , Endodermo/embriología , Gástrula/embriología , Mesodermo/embriología , Sistema Nervioso , Notocorda/embriología , Organizadores Embrionarios/metabolismo , Nicho de Células Madre/genética , Células Madre/metabolismo , Células Madre/fisiología
19.
Development ; 148(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589510

RESUMEN

Within the developing head, tissues undergo cell-fate transitions to shape the forming structures. This starts with the neural crest, which undergoes epithelial-to-mesenchymal transition (EMT) to form, amongst other tissues, many of the skeletal tissues of the head. In the eye and ear, these neural crest cells then transform back into an epithelium, via mesenchymal-to-epithelial transition (MET), highlighting the flexibility of this population. Elsewhere in the head, the epithelium loses its integrity and transforms into mesenchyme. Here, we review these craniofacial transitions, looking at why they happen, the factors that trigger them, and the cell and molecular changes they involve. We also discuss the consequences of aberrant EMT and MET in the head.


Asunto(s)
Epitelio/embriología , Cabeza/embriología , Mesodermo/embriología , Animales , Diferenciación Celular , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Cresta Neural/embriología , Especificidad de Órganos , Vertebrados
20.
Development ; 148(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33323370

RESUMEN

The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering.


Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Raíz del Diente/embriología , Raíz del Diente/metabolismo , Vía de Señalización Wnt , Proteína de Unión al GTP cdc42/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Masculino , Mesodermo/embriología , Ratones , Ratones Mutantes , Morfogénesis , Odontoblastos/citología , Odontoblastos/metabolismo , Raíz del Diente/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA