Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802512

ABSTRACT

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Subject(s)
Immunity, Innate , Interferon-gamma , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Interleukin-7 , STAT5 Transcription Factor , Thymus Gland , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/immunology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , CD8 Antigens/metabolism , Female , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Interleukin-7/metabolism
2.
Article in English | MEDLINE | ID: mdl-38316164

ABSTRACT

Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 25 is August 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
N Engl J Med ; 391(4): 334-342, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39018528

ABSTRACT

KRAS gain-of-function mutations are frequently observed in sporadic arteriovenous malformations. The mechanisms underlying the progression of such KRAS-driven malformations are still incompletely understood, and no treatments for the condition are approved. Here, we show the effectiveness of sotorasib, a specific KRAS G12C inhibitor, in reducing the volume of vascular malformations and improving survival in two mouse models carrying a mosaic Kras G12C mutation. We then administered sotorasib to two adult patients with severe KRAS G12C-related arteriovenous malformations. Both patients had rapid reductions in symptoms and arteriovenous malformation size. Targeting KRAS G12C appears to be a promising therapeutic approach for patients with KRAS G12C-related vascular malformations. (Funded by the European Research Council and others.).


Subject(s)
Arteriovenous Malformations , Proto-Oncogene Proteins p21(ras) , Animals , Female , Humans , Male , Mice , Middle Aged , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/drug therapy , Arteriovenous Malformations/genetics , Disease Models, Animal , Gain of Function Mutation , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/therapeutic use , Pyrimidines , Cardiovascular Agents/therapeutic use , Young Adult
4.
Blood ; 143(21): 2166-2177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38437728

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


Subject(s)
CD3 Complex , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , CD3 Complex/immunology , CD3 Complex/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Immunotherapy/methods , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
5.
Blood ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848537

ABSTRACT

We previously reported a better outcome in adult and pediatric T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 mutations without alterations of K-N-RAS and PTEN genes. Availability of high-throughput next-generation sequencing strategies (NGS) led us to refine the outcome prediction in T-ALL. Targeted whole-exome sequencing of 72 T-ALL related oncogenes was performed in 198 adult T-ALLs in first remission (CR1) from the GRAALL-2003/2005 protocols (ClinicalTrial.gov, NCT00222027, NCT00327678) and 242 pediatric T-ALLs from the FRALLE2000T. This approach enabled the identification of the first NGS-based classifier in T-ALL categorizing low-risk patients as those with N/F, PHF6, or EP300 mutations, excluding N-K-RAS, PI3K pathway (PTEN, PIK3CA, and PIK3R1), TP53, DNMT3A, IDH1/2, and IKZF1 alterations, with a 5-year cumulative incidence of relapse (CIR) estimated at 21%. Conversely, the remaining patients were classified as high-risk, exhibiting a 5-year CIR estimated at 47%. We externally validated this stratification in the pediatric cohort. NGS-based classifier was highly prognostic, independently of minimal residual disease (MRD) and white blood cells counts (WBC), in both adult and pediatric cohorts. Integration of the NGS-based classifier into a comprehensive risk stratification model, including WBC count at diagnosis and MRD at the end of induction, enabled the identification of an adverse risk subgroup (25%) with a 5-year CIR estimated at 51%, and a favorable risk group (32%) with a 5-year CIR estimated at 12%. NGS-based stratification combined with WBC and MRD sharpens the prognostic classification in T-ALL and identifies a new subgroup of patients who may benefit from innovative therapeutic approaches.

6.
Blood ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518104

ABSTRACT

Given the poor outcome of refractory and relapsing T-ALL, identifying prognostic markers is still challenging. Using SNP-array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly-diagnosed T-ALL patients including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP-array results identified at least one somatic genomic imbalance in virtually all T-ALL patients (~96%). Del(9)(p21) (~70%) and UPD(9)p21)/CDKN2A/B (~28%) were the most frequent genomic imbalances. Unexpectedly del(13q14)/RB1/DLEU1 (~14%) was the second more frequent CNV followed by del(6)(q15)/CASP8AP2 (~11%), del(1)(p33)/SIL-TAL1 (~11%), del(12)(p13)ETV6/CDKN1B (~9%), del(18)(p11)/PTPN2 (~9%), del(1)(p36)/RPL22 (~9%), and del(17)(q11)/NF1/SUZ12 (~8%). SNP-array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult T-ALL patients demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n=6, ~2%), del(16)(p13)/CREBBP (n=15, ~5%) as well as the newly identified recurrent gain at 6q27 involving MLLT4 (n=10, ~3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4 maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL.

7.
Genome Res ; 32(7): 1343-1354, 2022 07.
Article in English | MEDLINE | ID: mdl-34933939

ABSTRACT

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Subject(s)
Epigenomics , Translocation, Genetic , Chromatin/genetics , Histones , Humans , Oncogenes
8.
Genome Res ; 32(7): 1328-1342, 2022 07.
Article in English | MEDLINE | ID: mdl-34162697

ABSTRACT

Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Epigenesis, Genetic , Histones/metabolism , Humans , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
9.
Blood ; 142(2): 158-171, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37023368

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis related to refractory/relapsing diseases, raising the need for new targeted therapies. Activating mutations of interleukin-7-receptor pathway genes (IL-7Rp) play a proven leukemia-supportive role in T-ALL. JAK inhibitors, such as ruxolitinib, have recently demonstrated preclinical efficacy. However, prediction markers for sensitivity to JAK inhibitors are still lacking. Herein, we show that IL-7R (CD127) expression is more frequent (∼70%) than IL-7Rp mutations in T-ALL (∼30%). We compared the so-called nonexpressers (no IL-7R expression/IL-7Rp mutation), expressers (IL7R expression without IL-7Rp mutation), and mutants (IL-7Rp mutations). Integrative multiomics analysis outlined IL-7R deregulation in virtually all T-ALL subtypes, at the epigenetic level in nonexpressers, genetic level in mutants, and posttranscriptional level in expressers. Ex vivo data using primary-derived xenografts support that IL-7Rp is functional whenever the IL-7R is expressed, regardless of the IL-7Rp mutational status. Consequently, ruxolitinib impaired T-ALL survival in both expressers and mutants. Interestingly, we show that expressers displayed ectopic IL-7R expression and IL-7Rp addiction conferring a deeper sensitivity to ruxolitinib. Conversely, mutants were more sensitive to venetoclax than expressers. Overall, the combination of ruxolitinib and venetoclax resulted in synergistic effects in both groups. We illustrate the clinical relevance of this association by reporting the achievement of complete remission in 2 patients with refractory/relapsed T-ALL. This provides proof of concept for translation of this strategy into clinics as a bridge-to-transplantation therapy. IL7R expression can be used as a biomarker for sensitivity to JAK inhibition, thereby expanding the fraction of patients with T-ALL eligible for ruxolitinib up to nearly ∼70% of T-ALL cases.


Subject(s)
Janus Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Janus Kinase Inhibitors/therapeutic use , T-Lymphocytes/pathology
10.
Immunity ; 45(3): 610-625, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27612641

ABSTRACT

The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.


Subject(s)
Celiac Disease/immunology , Interleukin-15/immunology , Intestines/immunology , Lymphoma/immunology , T-Lymphocyte Subsets/immunology , Animals , CD3 Complex/immunology , Cell Differentiation/immunology , Cells, Cultured , Granzymes/immunology , Humans , Inhibitor of Differentiation Protein 2/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Receptor, Notch1/immunology , STAT3 Transcription Factor/immunology , Signal Transduction/immunology , Transcription, Genetic/immunology
11.
Brain ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106285

ABSTRACT

Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified. GABAa mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, was shown to participate to ictogenesis in human pediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is still unclear. Here we studied the post translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCC), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and ultimately GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo controls, diagnosed by histology plus genetic profiling) were operated for drug resistant epilepsy. Postoperative cortical tissues were recorded on multielectrode array (MEA) to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled Cl- conductance and equilibrium potential (EGABA) for GABA measurement. Of the 25 clinical cases, half harbored a somatic mutation in the mTOR pathway, while pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, that was reversed by WNK1 and SPAK antagonists (NEM and Staurosporine). mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR specific antagonist Rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in EGABA by rapamycin, measured after incorporation of MCD membranes to X. laevis oocytes, in line with a reestablishment of normal ECl-. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to chloride cotransporters deregulation, increased neuronal chloride levels and GABAa dysfunction in malformations of Cortical Development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.

12.
Blood ; 140(13): 1522-1532, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35687761

ABSTRACT

Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).


Subject(s)
HTLV-I Infections , Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Gene Products, tax/genetics , Gene Products, tax/metabolism , HTLV-I Infections/complications , HTLV-I Infections/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Leukemia-Lymphoma, Adult T-Cell/pathology , RNA , RNA, Messenger , Receptors, KIR3DL2/genetics
13.
Haematologica ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049600

ABSTRACT

Not available.

14.
J Allergy Clin Immunol ; 151(6): 1634-1645, 2023 06.
Article in English | MEDLINE | ID: mdl-36638922

ABSTRACT

BACKGROUND: Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset posttreatment manifestations (such as persistent hepatitis) are not uncommon. OBJECTIVE: We sought to characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments. METHODS: We used various techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from patients in the SCIDH+ group and corresponding asymptomatic similarly transplanted SCID patients without hepatitis (SCIDH-). RESULTS: Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus, and sapovirus) in liver and/or stools, which were not found in stools from the SCIDH- group (n = 12). Multiomics analysis identified an expansion of effector memory CD8+ T cells with high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism, and defective B-cell function, representing 25% of the 44 patients with SCID having these characteristics. Partially myeloablative retransplantation or GT of patients with this condition (which we have named as "enteric virus infection associated with hepatitis") led to the reconstitution of T- and B-cell immunity and remission of hepatitis in 5 patients, concomitantly with viral clearance. CONCLUSIONS: Enteric virus infection associated with hepatitis is related to chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B-cell function.


Subject(s)
Enterovirus Infections , Hematopoietic Stem Cell Transplantation , Hepatitis , Severe Combined Immunodeficiency , Virus Diseases , Humans , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/etiology , CD8-Positive T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Virus Diseases/etiology , Hepatitis/etiology
15.
Mol Cancer ; 22(1): 12, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36650499

ABSTRACT

The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Certain proto-oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome is unclear. Using T-cell acute lymphoblastic leukemia (T-ALL) as an example, we show that patients harboring 5'super-enhancer (5'SE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespective of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5'SE can be targeted using Mebendazole to induce MYB protein degradation and T-ALL cell death. Of note Mebendazole treatment demonstrated efficacy in vivo in T-ALL preclinical models. Our work provides proof of concept that within a specific oncogene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically distinct patient subgroups and pave the way for future super-enhancer targeting therapy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Mebendazole
16.
Mol Cancer ; 22(1): 108, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37430263

ABSTRACT

The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.


Subject(s)
Carcinogenesis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Genomic Instability , Hematopoietic Stem Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors
17.
Kidney Int ; 103(1): 70-76, 2023 01.
Article in English | MEDLINE | ID: mdl-36108807

ABSTRACT

Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Humans , Child , Bone Marrow , T-Lymphocytes , Hematopoiesis , Kidney , Hematopoietic Stem Cell Transplantation/adverse effects , Bone Marrow Transplantation , Mammals
18.
Blood ; 138(19): 1855-1869, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34125178

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a group of aggressive hematological cancers with dismal outcomes that are in need of new therapeutic options. Polycomb repressor complex 2 (PRC2) loss-of-function alterations were reported in pediatric T-ALL, yet their clinical relevance and functional consequences remain elusive. Here, we extensively analyzed PRC2 alterations in a large series of 218 adult T-ALL patients. We found that PRC2 genetic lesions are frequent events in T-ALL and are not restricted to early thymic precursor ALL. PRC2 loss of function associates with activating mutations of the IL7R/JAK/STAT pathway. PRC2-altered T-ALL patients respond poorly to prednisone and have low bone marrow blast clearance and persistent minimal residual disease. Furthermore, we identified that PRC2 loss of function profoundly reshapes the genetic and epigenetic landscapes, leading to the reactivation of stem cell programs that cooperate with bromodomain and extraterminal (BET) proteins to sustain T-ALL. This study identifies BET proteins as key mediators of the PRC2 loss of function-induced remodeling. Our data have uncovered a targetable vulnerability to BET inhibition that can be exploited to treat PRC2-altered T-ALL patients.


Subject(s)
Gene Expression Regulation, Leukemic , Loss of Function Mutation , Polycomb Repressive Complex 2/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics , Adolescent , Adult , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Epigenesis, Genetic/drug effects , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Loss of Function Mutation/drug effects , Male , Mice, SCID , Middle Aged , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prednisone/therapeutic use , Transcription Factors/antagonists & inhibitors , Tumor Cells, Cultured , Young Adult
19.
Haematologica ; 108(5): 1259-1271, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36632736

ABSTRACT

T-cell acute lymphocytic leukemia protein 1 (TAL1) is one of the most frequently deregulated oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). Its deregulation can occur through diverse cis-alterations, including SIL-TAL1 microdeletions, translocations with T-cell Receptor loci, and more recently described upstream intergenic non-coding mutations. These mutations consist of recurrent focal microinsertions that create an oncogenic neo-enhancer accompanied by activating epigenetic marks. This observation laid the groundwork for an innovative paradigm concerning the activation of proto-oncogenes via genomic alterations of non-coding intergenic regions. However, for the majority of T-ALL expressing TAL1 (TAL1+), the deregulation mechanism remains 'unresolved'. We took advantage of H3K27ac and H3K4me3 chromatin immunoprecipitation sequencing data of eight cases of T-ALL, including five TAL1+ cases. We identified a putative novel oncogenic neo-enhancer downstream of TAL1 in an unresolved monoallelic TAL1+ case. A rare but recurrent somatic heterozygous microinsertion within this region creates a de novo binding site for MYB transcription factor. Here we demonstrate that this mutation leads to increased enhancer activity, gain of active epigenetic marks, and TAL1 activation via recruitment of MYB. These results highlight the diversity of non-coding mutations that can drive oncogene activation.


Subject(s)
Enhancer Elements, Genetic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mutation , Oncogene Proteins, Fusion/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Lymphocytes/metabolism , Transcription Factors/genetics
20.
Ann Pathol ; 43(3): 252-265, 2023 Jun.
Article in French | MEDLINE | ID: mdl-37156715

ABSTRACT

The gastrointestinal tract is the site of exciting immunological interactions between the epithelium and the mucosa-associated lymphoid tissue, leading to the immune response to food and microbial antigens in the digestive lumen. The objective of this review is to present the main dysimmune pathologies of the digestive tract leading to an enteropathy. As examples, we describe celiac and non-celiac enteropathies to clarify a florid diagnostic framework, by identifying a spectrum of elementary lesions, which must be confronted with the clinico biological context of the patient to orient the diagnosis. The microscopic lesions observed are most often non-specific and may be encountered in several diagnostic settings. Moreover, it is a set of elementary lesions in each clinical context that will orient the diagnostic framework. Celiac disease is the main etiology of enteropathy with villous atrophy, its diagnosis is multidisciplinary and there are many differential diagnoses. We will discuss celiac disease lymphomatous complications as enteropathy associated T-cell lymphoma including refractory sprue type 2. We will then present the non-celiac enteropathies. Among these, enteropathies of unknown etiology may be associated with a primary immune deficiency that may be reflected by florid lymphoid hyperplasia of the gastrointestinal tract and/or be associated with an infectious etiology that should also be constantly sought. Finally, we will discuss of induced enteropathy by new immunomodulatory treatments.


Subject(s)
Celiac Disease , Humans , Celiac Disease/complications , Celiac Disease/diagnosis , Intestine, Small/pathology , Hyperplasia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL