Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Hum Mol Genet ; 31(4): 651-664, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34523677

ABSTRACT

The environment and events that we are exposed to in utero, during birth and in early childhood influence our future physical and mental health. The underlying mechanisms that lead to these outcomes are unclear, but long-term changes in epigenetic marks, such as DNA methylation, could act as a mediating factor or biomarker. DNA methylation data were assayed at 713 522 CpG sites from 9537 participants of the Generation Scotland: Scottish Family Health Study, a family-based cohort with extensive genetic, medical, family history and lifestyle information. Methylome-wide association studies of eight early life environment phenotypes and two adult mental health phenotypes (major depressive disorder and brief resilience scale) were conducted using DNA methylation data collected from adult whole blood samples. Two genes involved with different developmental pathways (PRICKLE2, Prickle Planar Cell Polarity Protein 2 and ABI1, Abl-Interactor-1) were annotated to CpG sites associated with preterm birth (P < 1.27 × 10-9). A further two genes important to the development of sensory pathways (SOBP, Sine Oculis Binding Protein Homolog and RPGRIP1, Retinitis Pigmentosa GTPase Regulator Interacting Protein) were annotated to sites associated with low birth weight (P < 4.35 × 10-8). The examination of methylation profile scores and genes and gene-sets annotated from associated CpGs sites found no evidence of overlap between the early life environment and mental health conditions. Birth date was associated with a significant difference in estimated lymphocyte and neutrophil counts. Previous studies have shown that early life environments influence the risk of developing mental health disorders later in life; however, this study found no evidence that this is mediated by stable changes to the methylome detectable in peripheral blood.


Subject(s)
Depressive Disorder, Major , Premature Birth , Adaptor Proteins, Signal Transducing , Child, Preschool , CpG Islands/genetics , Cytoskeletal Proteins , DNA Methylation/genetics , Epigenesis, Genetic , Epigenome , Female , Humans , Infant, Newborn , Mental Health , Pregnancy
2.
Mol Psychiatry ; 27(3): 1647-1657, 2022 03.
Article in English | MEDLINE | ID: mdl-34880450

ABSTRACT

Antidepressants are an effective treatment for major depressive disorder (MDD), although individual response is unpredictable and highly variable. Whilst the mode of action of antidepressants is incompletely understood, many medications are associated with changes in DNA methylation in genes that are plausibly linked to their mechanisms. Studies of DNA methylation may therefore reveal the biological processes underpinning the efficacy and side effects of antidepressants. We performed a methylome-wide association study (MWAS) of self-reported antidepressant use accounting for lifestyle factors and MDD in Generation Scotland (GS:SFHS, N = 6428, EPIC array) and the Netherlands Twin Register (NTR, N = 2449, 450 K array) and ran a meta-analysis of antidepressant use across these two cohorts. We found ten CpG sites significantly associated with self-reported antidepressant use in GS:SFHS, with the top CpG located within a gene previously associated with mental health disorders, ATP6V1B2 (ß = -0.055, pcorrected = 0.005). Other top loci were annotated to genes including CASP10, TMBIM1, MAPKAPK3, and HEBP2, which have previously been implicated in the innate immune response. Next, using penalised regression, we trained a methylation-based score of self-reported antidepressant use in a subset of 3799 GS:SFHS individuals that predicted antidepressant use in a second subset of GS:SFHS (N = 3360, ß = 0.377, p = 3.12 × 10-11, R2 = 2.12%). In an MWAS analysis of prescribed selective serotonin reuptake inhibitors, we showed convergent findings with those based on self-report. In NTR, we did not find any CpGs significantly associated with antidepressant use. The meta-analysis identified the two CpGs of the ten above that were common to the two arrays used as being significantly associated with antidepressant use, although the effect was in the opposite direction for one of them. Antidepressants were associated with epigenetic alterations in loci previously associated with mental health disorders and the innate immune system. These changes predicted self-reported antidepressant use in a subset of GS:SFHS and identified processes that may be relevant to our mechanistic understanding of clinically relevant antidepressant drug actions and side effects.


Subject(s)
Depressive Disorder, Major , Pregnancy Proteins , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Epigenome , Heme-Binding Proteins , Humans , Immune System , Netherlands , Pregnancy Proteins/genetics , Scotland
3.
Mol Psychiatry ; 26(9): 5112-5123, 2021 09.
Article in English | MEDLINE | ID: mdl-32523041

ABSTRACT

Variation in DNA methylation (DNAm) is associated with lifestyle factors such as smoking and body mass index (BMI) but there has been little research exploring its ability to identify individuals with major depressive disorder (MDD). Using penalised regression on genome-wide CpG methylation, we tested whether DNAm risk scores (MRS), trained on 1223 MDD cases and 1824 controls, could discriminate between cases (n = 363) and controls (n = 1417) in an independent sample, comparing their predictive accuracy to polygenic risk scores (PRS). The MRS explained 1.75% of the variance in MDD (ß = 0.338, p = 1.17 × 10-7) and remained associated after adjustment for lifestyle factors (ß = 0.219, p = 0.001, R2 = 0.68%). When modelled alongside PRS (ß = 0.384, p = 4.69 × 10-9) the MRS remained associated with MDD (ß = 0.327, p = 5.66 × 10-7). The MRS was also associated with incident cases of MDD who were well at recruitment but went on to develop MDD at a later assessment (ß = 0.193, p = 0.016, R2 = 0.52%). Heritability analyses found additive genetic effects explained 22% of variance in the MRS, with a further 19% explained by pedigree-associated genetic effects and 16% by the shared couple environment. Smoking status was also strongly associated with MRS (ß = 0.440, p ≤ 2 × 10-16). After removing smokers from the training set, the MRS strongly associated with BMI (ß = 0.053, p = 0.021). We tested the association of MRS with 61 behavioural phenotypes and found that whilst PRS were associated with psychosocial and mental health phenotypes, MRS were more strongly associated with lifestyle and sociodemographic factors. DNAm-based risk scores of MDD significantly discriminated MDD cases from controls in an independent dataset and may represent an archive of exposures to lifestyle factors that are relevant to the prediction of MDD.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Major/genetics , Epigenesis, Genetic/genetics , Epigenomics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Sociodemographic Factors
4.
Brain Behav Immun ; 92: 39-48, 2021 02.
Article in English | MEDLINE | ID: mdl-33221487

ABSTRACT

Inflammatory processes are implicated in the aetiology of Major Depressive Disorder (MDD); however, the relationship between peripheral inflammation, brain structure and depression remains unclear, partly due to complexities around the use of acute/phasic inflammatory biomarkers. Here, we report the first large-scale study of both serological and methylomic signatures of CRP (considered to represent acute and chronic measures of inflammation respectively) and their associations with depression status/symptoms, and structural neuroimaging phenotypes (T1 and diffusion MRI) in a large community-based sample (Generation Scotland; NMDD cases = 271, Ncontrols = 609). Serum CRP was associated with overall MDD severity, and specifically with current somatic symptoms- general interest (ß = 0.145, PFDR = 6 × 10-4) and energy levels (ß = 0.101, PFDR = 0.027), along with reduced entorhinal cortex thickness (ß = -0.095, PFDR = 0.037). DNAm CRP was significantly associated with reduced global grey matter/cortical volume and widespread reductions in integrity of 16/24 white matter tracts (with greatest regional effects in the external and internal capsules, ßFA= -0.12 to -0.14). In general, the methylation-based measures showed stronger associations with imaging metrics than serum-based CRP measures (ßaverage = -0.15 versus ßaverage = 0.01 respectively). These findings provide evidence for central effects of peripheral inflammation from both serological and epigenetic markers of inflammation, including in brain regions previously implicated in depression. This suggests that these imaging measures may be involved in the relationship between peripheral inflammation and somatic/depressive symptoms. Notably, greater effects on brain morphology were seen for methylation-based rather than serum-based measures of inflammation, indicating the importance of such measures for future studies.


Subject(s)
Depressive Disorder, Major , Biomarkers , Brain/diagnostic imaging , Depressive Disorder, Major/genetics , Epigenesis, Genetic , Humans , Inflammation/genetics , Scotland
5.
Hum Brain Mapp ; 41(14): 3922-3937, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32558996

ABSTRACT

Major depressive disorder (MDD) has been the subject of many neuroimaging case-control classification studies. Although some studies report accuracies ≥80%, most have investigated relatively small samples of clinically-ascertained, currently symptomatic cases, and did not attempt replication in larger samples. We here first aimed to replicate previously reported classification accuracies in a small, well-phenotyped community-based group of current MDD cases with clinical interview-based diagnoses (from STratifying Resilience and Depression Longitudinally cohort, 'STRADL'). We performed a set of exploratory predictive classification analyses with measures related to brain morphometry and white matter integrity. We applied three classifier types-SVM, penalised logistic regression or decision tree-either with or without optimisation, and with or without feature selection. We then determined whether similar accuracies could be replicated in a larger independent population-based sample with self-reported current depression (UK Biobank cohort). Additional analyses extended to lifetime MDD diagnoses-remitted MDD in STRADL, and lifetime-experienced MDD in UK Biobank. The highest cross-validation accuracy (75%) was achieved in the initial current MDD sample with a decision tree classifier and cortical surface area features. The most frequently selected decision tree split variables included surface areas of bilateral caudal anterior cingulate, left lingual gyrus, left superior frontal, right precentral and paracentral regions. High accuracy was not achieved in the larger samples with self-reported current depression (53.73%), with remitted MDD (57.48%), or with lifetime-experienced MDD (52.68-60.29%). Our results indicate that high predictive classification accuracies may not immediately translate to larger samples with broader criteria for depression, and may not be robust across different classification approaches.


Subject(s)
Cerebral Cortex/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/standards , Neuroimaging/standards , White Matter/diagnostic imaging , Adult , Aged , Cerebral Cortex/pathology , Cohort Studies , Datasets as Topic , Depressive Disorder, Major/pathology , Diffusion Magnetic Resonance Imaging/standards , Female , Gray Matter/pathology , Humans , Male , Middle Aged , Remission Induction , Sensitivity and Specificity , White Matter/pathology
6.
Mol Psychiatry ; 24(2): 294-311, 2019 02.
Article in English | MEDLINE | ID: mdl-30401811

ABSTRACT

The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Mental Disorders/genetics , NF-kappa B/metabolism , Abnormalities, Multiple/genetics , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Cell Proliferation , Chromosome Duplication/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Male , Middle Aged , NF-kappa B/genetics , Neuroimaging/methods , Neurons , Organoids/physiology , Signal Transduction , Stem Cells/physiology
7.
Eur Heart J ; 40(28): 2290-2300, 2019 07 21.
Article in English | MEDLINE | ID: mdl-30854560

ABSTRACT

AIMS: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age. METHODS AND RESULTS: Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist-hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44-79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker. CONCLUSION: Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Cerebrovascular Disorders/epidemiology , Magnetic Resonance Imaging , Adult , Aged , Biological Specimen Banks , Female , Humans , Male , Middle Aged , Risk Factors , United Kingdom
8.
Cereb Cortex Commun ; 4(4): tgad020, 2023.
Article in English | MEDLINE | ID: mdl-38089939

ABSTRACT

Major depressive disorder often originates in adolescence and is associated with long-term functional impairment. Mechanistically characterizing this heterogeneous illness could provide important leads for optimizing treatment. Importantly, reward learning is known to be disrupted in depression. In this pilot fMRI study of 21 adolescents (16-20 years), we assessed how reward network disruption impacts specifically on Bayesian belief representations of self-efficacy (SE-B) and their associated uncertainty (SE-U), using a modified instrumental learning task probing activation induced by the opportunity to choose, and an optimal Hierarchical Gaussian Filter computational model. SE-U engaged caudate, nucleus accumbens (NAcc), precuneus, posterior parietal and dorsolateral prefrontal cortex (PFWE < 0.005). Sparse partial least squares analysis identified SE-U striatal activation as associating with one's sense of perceived choice and depressive symptoms, particularly anhedonia and negative feelings about oneself. As Bayesian uncertainty modulates belief flexibility and their capacity to steer future actions, this suggests that these striatal signals may be informative developmentally, longitudinally and in assessing response to treatment.

9.
Biol Psychiatry Glob Open Sci ; 3(4): 814-823, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881537

ABSTRACT

Background: Schizophrenia is a heritable psychiatric disorder with a polygenic architecture. Genome-wide association studies have reported that an increasing number of risk-associated variants and polygenic risk scores (PRSs) explain 17% of the variance in the disorder. Substantial heterogeneity exists in the effect of these variants, and aggregating them based on biologically relevant functions may provide mechanistic insight into the disorder. Methods: Using the largest schizophrenia genome-wide association study conducted to date, we associated PRSs based on 5 gene sets previously found to contribute to schizophrenia pathophysiology-postsynaptic density of excitatory synapses, postsynaptic membrane, dendritic spine, axon, and histone H3-K4 methylation-along with respective whole-genome PRSs, with neuroimaging (n > 29,000) and reported psychotic-like experiences (n > 119,000) variables in healthy UK Biobank subjects. Results: Several variables were significantly associated with the axon gene-set (psychotic-like communications, parahippocampal gyrus volume, fractional anisotropy thalamic radiations, and fractional anisotropy posterior thalamic radiations (ß range -0.016 to 0.0916, false discovery rate-corrected p [pFDR] ≤ .05), postsynaptic density gene-set (psychotic-like experiences distress, global surface area, and cingulate lobe surface area [ß range -0.014 to 0.0588, pFDR ≤ .05]), and histone gene set (entorhinal surface area: ß = -0.016, pFDR = .035). From these, whole-genome PRSs were significantly associated with psychotic-like communications (ß = 0.2218, pFDR = 1.34 × 10-7), distress (ß = 0.1943, pFDR = 7.28 × 10-16), and fractional anisotropy thalamic radiations (ß = -0.0143, pFDR = .036). Permutation analysis revealed that these associations were not due to chance. Conclusions: Our results indicate that genetic variation in 3 gene sets relevant to schizophrenia may confer risk for the disorder through effects on previously implicated neuroimaging variables. Because associations were stronger overall for whole-genome PRSs, findings here highlight that selection of biologically relevant variants is not yet sufficient to address the heterogeneity of the disorder.

10.
Eur Psychiatry ; 65(1): e44, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35899848

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based 'Regional Vulnerability Index' (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1). METHODS: MDD-RVIs quantify the correlation of the individual's corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed. RESULTS: In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (ß = 0.099-0.281, PFDR = 0.001-0.043) than MDD-PRS (ß = 0.056-0.152, PFDR = 0.140-0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (ß = 0.084-0.086, p = 1.38 × 10-4-4.77 × 10-4) but not with any MDD-RVIs (ß < 0.05, p > 0.05). CONCLUSIONS: Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.


Subject(s)
Depressive Disorder, Major , Adolescent , Adult , Aged , Brain/diagnostic imaging , Child , Depressive Disorder, Major/epidemiology , Humans , Middle Aged , Risk Factors
11.
Transl Psychiatry ; 12(1): 157, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418197

ABSTRACT

Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of 'probable' lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (ß < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research.


Subject(s)
Biological Specimen Banks , Depression , Depression/diagnostic imaging , Female , Humans , Male , Neuroimaging , Retrospective Studies , United Kingdom
12.
Brain Behav Immun Health ; 26: 100528, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36277463

ABSTRACT

Inflammation is implicated in depression and psychosis, including association of childhood inflammatory markers on the subsequent risk of developing symptoms. However, it is unknown whether early-life inflammatory markers are associated with the number of depressive and psychotic symptoms from childhood to adulthood. Using the prospective Avon Longitudinal Study of Children and Parents birth cohort (N = up-to 6401), we have examined longitudinal associations of early-life inflammation [exposures: interleukin-6 (IL-6), C-reactive protein (CRP) levels at age 9y; IL-6 and CRP DNA-methylation (DNAm) scores at birth and age 7y; and IL-6 and CRP polygenic risk scores (PRSs)] with the number of depressive episodes and psychotic experiences (PEs) between ages 10-28 years. Psychiatric outcomes were assessed using the Short Mood and Feelings Questionnaire and Psychotic Like Symptoms Questionnaires, respectively. Exposure-outcome associations were tested using negative binomial models, which were adjusted for metabolic and sociodemographic factors. Serum IL-6 levels at age 9y were associated with the total number of depressive episodes between 10 and 28y in the base model (n = 4835; ß = 0.066; 95%CI:0.020-0.113; pFDR = 0.041) which was weaker when adjusting for metabolic and sociodemographic factors. Weak associations were observed between inflammatory markers (serum IL-6 and CRP DNAm scores) and total number of PEs. Other inflammatory markers were not associated with depression or PEs. Early-life inflammatory markers are associated with the burden of depressive episodes and of PEs subsequently from childhood to adulthood. These findings support a potential role of early-life inflammation in the aetiology of depression and psychosis and highlight inflammation as a potential target for treatment and prevention.

13.
Genome Med ; 14(1): 36, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35354486

ABSTRACT

BACKGROUND: Depression is a disabling and highly prevalent condition where genetic and epigenetic, such as DNA methylation (DNAm), differences contribute to disease risk. DNA methylation is influenced by genetic variation but the association between polygenic risk of depression and DNA methylation is unknown. METHODS: We investigated the association between polygenic risk scores (PRS) for depression and DNAm by conducting a methylome-wide association study (MWAS) in Generation Scotland (N = 8898, mean age = 49.8 years) with replication in the Lothian Birth Cohorts of 1921 and 1936 and adults in the Avon Longitudinal Study of Parents and Children (ALSPAC) (Ncombined = 2049, mean age = 79.1, 69.6 and 47.2 years, respectively). We also conducted a replication MWAS in the ALSPAC children (N = 423, mean age = 17.1 years). Gene ontology analysis was conducted for the cytosine-guanine dinucleotide (CpG) probes significantly associated with depression PRS, followed by Mendelian randomisation (MR) analysis to infer the causal relationship between depression and DNAm. RESULTS: Widespread associations (NCpG = 71, pBonferroni < 0.05, p < 6.3 × 10-8) were found between PRS constructed using genetic risk variants for depression and DNAm in CpG probes that localised to genes involved in immune responses and neural development. The effect sizes for the significant associations were highly correlated between the discovery and replication samples in adults (r = 0.79) and in adolescents (r = 0.82). Gene Ontology analysis showed that significant CpG probes are enriched in immunological processes in the human leukocyte antigen system. Additional MWAS was conducted for each lead genetic risk variant. Over 47.9% of the independent genetic risk variants included in the PRS showed associations with DNAm in CpG probes located in both the same (cis) and distal (trans) locations to the genetic loci (pBonferroni < 0.045). Subsequent MR analysis showed that there are a greater number of causal effects found from DNAm to depression than vice versa (DNAm to depression: pFDR ranged from 0.024 to 7.45 × 10-30; depression to DNAm: pFDR ranged from 0.028 to 0.003). CONCLUSIONS: PRS for depression, especially those constructed from genome-wide significant genetic risk variants, showed methylome-wide differences associated with immune responses. Findings from MR analysis provided evidence for causal effect of DNAm to depression.


Subject(s)
Antigen Presentation , Epigenome , Adolescent , Adult , Child , Depression/genetics , Humans , Longitudinal Studies , Mendelian Randomization Analysis , Middle Aged , Risk Factors
14.
EBioMedicine ; 79: 104000, 2022 May.
Article in English | MEDLINE | ID: mdl-35490552

ABSTRACT

BACKGROUND: DNA methylation (DNAm) is associated with time-varying environmental factors that contribute to major depressive disorder (MDD) risk. We sought to test whether DNAm signatures of lifestyle and biochemical factors were associated with MDD to reveal dynamic biomarkers of MDD risk that may be amenable to lifestyle interventions. METHODS: Here, we calculated methylation scores (MS) at multiple p-value thresholds for lifestyle (BMI, smoking, alcohol consumption, and educational attainment) and biochemical (high-density lipoprotein (HDL) and total cholesterol) factors in Generation Scotland (GS) (N=9,502) and in a replication cohort (ALSPACadults, N=565), using CpG sites reported in previous well-powered methylome-wide association studies. We also compared their predictive accuracy for MDD to a MDD MS in an independent GS sub-sample (N=4,432). FINDINGS: Each trait MS was significantly associated with its corresponding phenotype in GS (ßrange=0.089-1.457) and in ALSPAC (ßrange=0.078-2.533). Each MS was also significantly associated with MDD before and after adjustment for its corresponding phenotype in GS (ßrange=0.053-0.145). After accounting for relevant lifestyle factors, MS for educational attainment (ß=0.094) and alcohol consumption (MSp-value<0.01-0.5; ßrange=-0.069-0.083) remained significantly associated with MDD in GS. Smoking (AUC=0.569) and educational attainment (AUC=0.585) MSs could discriminate MDD from controls better than the MDD MS (AUC=0.553) in the independent GS sub-sample. Analyses implicating MDD did not replicate across ALSPAC, although the direction of effect was consistent for all traits when adjusting for the MS corresponding phenotypes. INTERPRETATION: We showed that lifestyle and biochemical MS were associated with MDD before and after adjustment for their corresponding phenotypes (pnominal<0.05), but not when smoking, alcohol consumption, and BMI were also included as covariates. MDD results did not replicate in the smaller, female-only independent ALSPAC cohort (NALSPAC=565; NGS=9,502), potentially due to demographic differences or low statistical power, but effect sizes were consistent with the direction reported in GS. DNAm scores for modifiable MDD risk factors may contribute to disease vulnerability and, in some cases, explain additional variance to their observed phenotypes. FUNDING: Wellcome Trust.


Subject(s)
Depressive Disorder, Major , Multifactorial Inheritance , Cohort Studies , DNA Methylation , Depressive Disorder, Major/etiology , Depressive Disorder, Major/genetics , Epigenome , Female , Genome-Wide Association Study , Humans
15.
Nat Commun ; 13(1): 4670, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945220

ABSTRACT

Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health.


Subject(s)
Genome-Wide Association Study , Proteome , Biomarkers/metabolism , Brain/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Epigenome , Proteome/genetics , Proteome/metabolism , Proteomics
16.
Transl Psychiatry ; 11(1): 21, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33414383

ABSTRACT

There has been a substantial amount of research reporting the neuroanatomical associations of psychotic symptoms in people with schizophrenia. Comparatively little attention has been paid to the neuroimaging correlates of subclinical psychotic symptoms, so-called "psychotic-like experiences" (PLEs), within large healthy populations. PLEs are relatively common in the general population (7-13%), can be distressing and negatively affect health. This study therefore examined gray and white matter associations of four different PLEs (auditory or visual PLEs, and delusional ideas about conspiracies or communications) in subjects of the UK Biobank study with neuroimaging data (N = 21,390, mean age = 63 years). We tested for associations between any PLE (N = 768) and individual PLEs with gray and white matter brain structures, controlling for sex, age, intracranial volume, scanning site, and position in the scanner. Individuals that reported having experienced auditory hallucinations (N = 272) were found to have smaller volumes of the caudate, putamen, and accumbens (ß = -0.115-0.134, pcorrected = 0.048-0.036), and reduced temporal lobe volume (ß = -0.017, pcorrected = 0.047) compared to those that did not. People who indicated that they had ever believed in unreal conspiracies (N = 111) had a larger volume of the left amygdala (ß = 0.023, pcorrected = 0.038). Individuals that reported a history of visual PLEs (N = 435) were found to have reduced white matter microstructure of the forceps major (ß = -0.029, pcorrected = 0.009), an effect that was more marked in participants who reported PLEs as distressing. These associations were not accounted for by diagnoses of psychotic or depressive illness, nor the known risk factors for psychotic symptoms of childhood adversity or cannabis use. These findings suggest altered regional gray matter volumes and white matter microstructure in association with PLEs in the general population. They further suggest that these alterations may appear more frequently with the presentation of different psychotic symptoms in the absence of clinically diagnosed psychotic disorders.


Subject(s)
Psychotic Disorders , White Matter , Biological Specimen Banks , Brain/diagnostic imaging , Humans , Middle Aged , Psychotic Disorders/diagnostic imaging , United Kingdom , White Matter/diagnostic imaging
17.
EClinicalMedicine ; 42: 101204, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34849476

ABSTRACT

BACKGROUND: Depression is the leading cause of disability worldwide with > 50% of cases emerging before the age of 25 years. Large-scale neuroimaging studies in depression implicate robust structural brain differences in the disorder. However, most studies have been conducted in adults and therefore, the temporal origins of depression-related imaging features remain largely unknown. This has important implications for understanding aetiology and informing timings of potential intervention. METHODS: Here, we examine associations between brain structure (cortical metrics and white matter microstructural integrity) and depression ratings (from caregiver and child), in a large sample (N = 8634) of early adolescents (9 to 11 years old) from the US-based, Adolescent Brain and Cognitive Development (ABCD) Study®. Data was collected from 2016 to 2018. FINDINGS: We report significantly decreased global cortical and white matter metrics, and regionally in frontal, limbic and temporal areas in adolescent depression (Cohen's d = -0⋅018 to -0⋅041, ß = -0·019 to -0⋅057). Further, we report consistently stronger imaging associations for caregiver-reported compared to child-reported depression ratings. Divergences between reports (caregiver vs child) were found to significantly relate to negative socio-environmental factors (e.g., family conflict, absolute ß = 0⋅048 to 0⋅169). INTERPRETATION: Depression ratings in early adolescence were associated with similar imaging findings to those seen in adult depression samples, suggesting neuroanatomical abnormalities may be present early in the disease course, arguing for the importance of early intervention. Associations between socio-environmental factors and reporter discrepancy warrant further consideration, both in the wider context of the assessment of adolescent psychopathology, and in relation to their role in aetiology. FUNDING: Wellcome Trust (References: 104036/Z/14/Z and 220857/Z/20/Z) and the Medical Research Council (MRC, Reference: MC_PC_17209).

18.
Transl Psychiatry ; 11(1): 523, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642301

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD), but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD, particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol, cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N = 993 individuals from Generation Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar brain volumes with reductions in the frontal, temporal and cingulate regions (ßrange = -0.057 to -0.104, all PFDR < 0.05). Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity; ßrange = 0.071 to 0.115, all PFDR = < 0.05), with early-life adversity (ß = 0.083, P = 0.017), and with reduced global and regional brain volumes (global: ß = -0.059, P = 0.043; nucleus accumbens: ß = -0.075, PFDR = 0.044). Associations with total glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological associations relevant to the aetiology of MDD.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Depression , Glucocorticoids , Gray Matter , Humans , Hydrocortisone , Hypothalamo-Hypophyseal System , Middle Aged , Pituitary-Adrenal System
19.
Transl Psychiatry ; 10(1): 55, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32066731

ABSTRACT

Expression quantitative trait loci (eQTL) are genetic variants associated with gene expression. Using genome-wide genotype data, it is now possible to impute gene expression using eQTL mapping efforts. This approach can be used to analyse previously unexplored relationships between gene expression and heritable in vivo measures of human brain structural connectivity. Using large-scale eQTL mapping studies, we computed 6457 gene expression scores (eQTL scores) using genome-wide genotype data in UK Biobank, where each score represents a genetic proxy measure of gene expression. These scores were then tested for associations with two diffusion tensor imaging measures, fractional anisotropy (NFA = 14,518) and mean diffusivity (NMD = 14,485), representing white matter structural integrity. We found FDR-corrected significant associations between 8 eQTL scores and structural connectivity phenotypes, including global and regional measures (ßabsolute FA = 0.0339-0.0453; MD = 0.0308-0.0381) and individual tracts (ßabsolute FA = 0.0320-0.0561; MD = 0.0295-0.0480). The loci within these eQTL scores have been reported to regulate expression of genes involved in various brain-related processes and disorders, such as neurite outgrowth and Parkinson's disease (DCAKD, SLC35A4, SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C). Our findings indicate that eQTL scores are associated with measures of in vivo brain connectivity and provide novel information not previously found by conventional genome-wide association studies. Although the role of expression of these genes regarding white matter microstructural integrity is not yet clear, these results suggest it may be possible, in future, to map potential trait- and disease-associated eQTL to in vivo brain connectivity and better understand the mechanisms of psychiatric disorders and brain traits, and their associated imaging findings.


Subject(s)
White Matter , Biological Specimen Banks , Diffusion Tensor Imaging , Genome-Wide Association Study , Humans , Neuroimaging , Quantitative Trait Loci , United Kingdom , White Matter/diagnostic imaging
20.
Article in English | MEDLINE | ID: mdl-30197049

ABSTRACT

BACKGROUND: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure. METHODS: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390). RESULTS: We found significantly lower FA in the superior longitudinal fasciculus (ß = -.035, pcorrected = .029) and significantly higher MD in a global measure of thalamic radiations (ß = .029, pcorrected = .021), as well as higher MD in the superior (ß = .034, pcorrected = .039) and inferior (ß = .029, pcorrected = .043) longitudinal fasciculus and in the anterior (ß = .025, pcorrected = .046) and superior (ß = .027, pcorrected = .043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. CONCLUSIONS: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts.


Subject(s)
Brain/pathology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Netrin-1/genetics , White Matter/pathology , Aged , Biological Specimen Banks , Depressive Disorder, Major/metabolism , Diffusion Tensor Imaging , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Signal Transduction , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL