Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Virol ; 89(1): 615-25, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339774

ABSTRACT

UNLABELLED: Autophagy is a ubiquitous mechanism involved in the lysosomal-mediated degradation of cellular components when they are engulfed in vacuoles called autophagosomes. Autophagy is also recognized as an important regulator of the innate and adaptive immune responses against numerous pathogens, which have, therefore, developed strategies to block or use the autophagy machinery to their own benefit. Upon human immunodeficiency virus type 1 (HIV-1) infection, viral envelope (Env) glycoproteins induce autophagy-dependent apoptosis of uninfected bystander CD4(+) T lymphocytes, a mechanism likely contributing to the loss of CD4(+) T cells. In contrast, in productively infected CD4(+) T cells, HIV-1 is able to block Env-induced autophagy in order to avoid its antiviral effect. To date, nothing is known about how autophagy restricts HIV-1 infection in CD4(+) T lymphocytes. Here, we report that autophagy selectively degrades the HIV-1 transactivator Tat, a protein essential for viral transcription and virion production. We demonstrated that this selective autophagy-mediated degradation of Tat relies on its ubiquitin-independent interaction with the p62/SQSTM1 adaptor. Taken together, our results provide evidence that the anti-HIV effect of autophagy is specifically due to the degradation of the viral transactivator Tat but that this process is rapidly counteracted by the virus to favor its replication and spread. IMPORTANCE: Autophagy is recognized as one of the most ancient and conserved mechanisms of cellular defense against invading pathogens. Cross talk between HIV-1 and autophagy has been demonstrated depending on the virally challenged cell type, and HIV-1 has evolved strategies to block this process to replicate efficiently. However, the mechanisms by which autophagy restricts HIV-1 infection remain to be elucidated. Here, we report that the HIV-1 transactivator Tat, a protein essential for viral replication, is specifically degraded by autophagy in CD4(+) T lymphocytes. Both Tat present in infected cells and incoming Tat secreted from infected cells are targeted for autophagy degradation through a ubiquitin-independent interaction with the autophagy receptor p62/SQSTM1. This study is the first to demonstrate that selective autophagy can be an antiviral process by degrading a viral transactivator. In addition, the results could help in the design of new therapies against HIV-1 by specifically targeting this mechanism.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV-1/immunology , tat Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , Humans , Sequestosome-1 Protein
2.
Cell Microbiol ; 17(9): 1277-85, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26135005

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection can be cleared by the innate immune system before the initiation of an adaptive immune response. This innate protection requires a variety of robust cell autonomous responses from many different host immune cell types. However, Mtb has evolved strategies to circumvent some of these defences. In this mini-review, we discuss these host-pathogen interactions with a focus on studies performed in human cells and/or supported by human genetics studies (such as genome-wide association studies).


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Genome-Wide Association Study , Humans , Immune Evasion
3.
Retrovirology ; 12: 53, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26105074

ABSTRACT

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Subject(s)
Autophagy , Cytidine Deaminase/metabolism , HIV-1/physiology , Histone Deacetylases/metabolism , Host-Pathogen Interactions , vif Gene Products, Human Immunodeficiency Virus/metabolism , APOBEC-3G Deaminase , Cell Line , Epithelial Cells/virology , Histone Deacetylase 6 , Humans , Protein Binding , Protein Interaction Mapping , Proteolysis
4.
PLoS Pathog ; 7(12): e1002422, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22174682

ABSTRACT

Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.


Subject(s)
Autophagy/physiology , GTP-Binding Proteins/metabolism , RNA Virus Infections/metabolism , RNA Virus Infections/transmission , RNA Viruses/metabolism , Base Sequence , Blotting, Western , Computational Biology , GTP-Binding Proteins/genetics , HeLa Cells , Humans , Microscopy, Confocal , Molecular Sequence Data , Open Reading Frames/genetics , RNA Virus Infections/genetics , RNA Viruses/genetics , RNA, Small Interfering , Transfection , Two-Hybrid System Techniques , Viral Proteins/metabolism
5.
Biol Cell ; 104(3): 165-87, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22188301

ABSTRACT

The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.


Subject(s)
HIV Infections/physiopathology , HIV-1/metabolism , Protein Processing, Post-Translational , Ubiquitin/metabolism , Ubiquitins/metabolism , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/metabolism , Humans , Ubiquitin/genetics , Ubiquitins/genetics
6.
Retrovirology ; 8: 74, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21929758

ABSTRACT

BACKGROUND: Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. RESULTS: We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. CONCLUSION: These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.


Subject(s)
Cell Membrane/virology , Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/genetics , RNA, Antisense/genetics , RNA, Viral/genetics , T-Lymphocytes/virology , Viral Proteins/genetics , Cell Line , Cell Membrane/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Humans , Mutation , Protein Transport , RNA, Antisense/metabolism , RNA, Viral/metabolism , T-Lymphocytes/metabolism , Viral Proteins/metabolism
7.
J Cell Biol ; 216(3): 583-594, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28242744

ABSTRACT

Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor-differentiated macrophages more than in granulocyte-macrophage colony-stimulating factor-differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host.


Subject(s)
DNA Replication/genetics , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Necrosis/genetics , Cell Death/genetics , Cell Differentiation/genetics , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Interferon-gamma/genetics , Leukocytes, Mononuclear/microbiology , Macrophage Colony-Stimulating Factor/genetics , Single-Cell Analysis
8.
J Clin Invest ; 126(3): 1093-108, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26901813

ABSTRACT

In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.


Subject(s)
Endothelial Cells/microbiology , Mycobacterium tuberculosis/growth & development , Tuberculosis/microbiology , Autophagy , Cells, Cultured , Granuloma/microbiology , Humans , Lymph Nodes/microbiology , Lymph Nodes/pathology , Nitric Oxide/biosynthesis , Tuberculosis/immunology
9.
AIDS ; 29(3): 275-86, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25490467

ABSTRACT

OBJECTIVE: Autophagy, an important antiviral process triggered during HIV-1 entry by gp41-dependent membrane fusion, is repressed in infected CD4+ T cells by an unknown mechanism. The aim of this study was to identify the role of viral infectivity factor (Vif) in the autophagy blockade. DESIGN/METHODS: To determine the role of Vif in autophagy inhibition, we used cell lines that express CD4 and CXCR4 and primary CD4+ T cells. Pull-down experiments, immunoprecipitation assays and computational analyses were performed to analyze the interaction between Vif and microtubule-associated protein light chain 3B (LC3B), a major autophagy component, in presence or absence of the antiviral host factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), after HIV-1 infection or ectopic expression of Vif. Autophagy was analyzed after infection by viruses expressing Vif (NL4.3) or not (NL4.3[DELTA]Vif), or after exogenous Vif expression. RESULTS: We demonstrate that the C-terminal part of Vif interacts directly with LC3B, independently of the presence of APOBEC3G.Vif binds to pro-LC3 and autophagy-related protein 4-cleaved LC3 forms, and glycine 120, the amino acid conjugated to phosphatidylethanolamine on autophagosomes, is required. Importantly, we evidence that Vif inhibits autophagy during HIV-1 infection. Indeed, autophagy is detected in target cells infected by NL4.3[DELTA]Vif, but prevented in cells infected by NL4.3. Furthermore, autophagy triggered in NL4.3[DELTA]Vif-infected cells is inhibited when Vif is expressed in trans but is still active when target cells express a mutant of Vif that binds weakly to LC3B. CONCLUSION: Our study unveils that Vif inhibits autophagy independently of its action on APOBEC3G and, therefore, suggest a new function of this viral protein in restricting innate antiviral mechanisms.


Subject(s)
Autophagy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV-1/immunology , HIV-1/physiology , Microtubule-Associated Proteins/metabolism , vif Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , Centrifugation , Humans , Immunoprecipitation , Protein Binding , Protein Interaction Mapping
10.
Front Immunol ; 3: 97, 2012.
Article in English | MEDLINE | ID: mdl-22586428

ABSTRACT

Autophagy is an intracellular mechanism whereby pathogens, particularly viruses, are destroyed in autolysosomes after their entry into targets cells. Therefore, to survive and replicate in host cells, viruses have developed multiple strategies to either counteract or exploit this process. The aim of this review is to outline the known relationships between HIV-1 and autophagy in CD4+ T lymphocytes and macrophages, two main HIV-1 cell targets. The differential regulation of autophagy in these two cell-types is highlighted and its potential consequences in terms of viral replication and physiopathology discussed.

SELECTION OF CITATIONS
SEARCH DETAIL