Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
CA Cancer J Clin ; 69(4): 305-343, 2019 07.
Article in English | MEDLINE | ID: mdl-31116423

ABSTRACT

The world of molecular profiling has undergone revolutionary changes over the last few years as knowledge, technology, and even standard clinical practice have evolved. Broad molecular profiling is now nearly essential for all patients with metastatic solid tumors. New agents have been approved based on molecular testing instead of tumor site of origin. Molecular profiling methodologies have likewise changed such that tests that were performed on patients a few years ago are no longer complete and possibly inaccurate today. As with all rapid change, medical providers can quickly fall behind or struggle to find up-to-date sources to ensure he or she provides optimum care. In this review, the authors provide the current state of the art for molecular profiling/precision medicine, practice standards, and a view into the future ahead.


Subject(s)
Genetic Techniques , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Biomarkers/analysis , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/diagnosis
2.
Stem Cells ; 39(5): 536-550, 2021 05.
Article in English | MEDLINE | ID: mdl-33470499

ABSTRACT

Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor ß (ERß) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERß in GSCs and the therapeutic potential of ERß agonists on GSCs remain largely unknown. Here, we examined whether ERß modulates GSCs stemness and tested the utility of two ERß selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERß agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERß increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERß reduced the proportion of GSCs in GBM cells. Overexpression of ERß or treatment with ERß agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERß agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERß overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERß overexpression or ERß agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERß overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERß activation could be a promising therapeutic strategy to eradicate GSCs.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation/drug effects , Estrogen Receptor beta/genetics , Glioma/genetics , Neoplastic Stem Cells/metabolism , AC133 Antigen/genetics , Animals , Apoptosis/drug effects , Benzopyrans/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Estrogen Receptor beta/agonists , Flavanones/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glial Fibrillary Acidic Protein/genetics , Glioma/drug therapy , Glioma/pathology , Humans , Mice , Neoplastic Stem Cells/drug effects , Receptors, Glutamate/genetics , SOXB1 Transcription Factors/genetics , Signal Transduction/drug effects , Stage-Specific Embryonic Antigens/genetics , Xenograft Model Antitumor Assays
3.
Breast Cancer Res Treat ; 187(2): 375-386, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33893909

ABSTRACT

PURPOSE: The majority of breast cancers are estrogen receptor (ERα) positive making endocrine therapy a mainstay for these patients. Unfortunately, resistance to endocrine therapy is a common occurrence. Fatty acid synthase (FASN) is a key enzyme in lipid biosynthesis and its expression is commensurate with tumor grade and resistance to numerous therapies. METHODS: The effect of the FASN inhibitor TVB-3166 on ERα expression and cell growth was characterized in tamoxifen-resistant cell lines, xenografts, and patient explants. Subcellular localization of ERα was assessed using subcellular fractionations. Palmitoylation and ubiquitination of ERα were assessed by immunoprecipitation. ERα and p-eIF2α protein levels were analyzed by Western blotting after treatment with TVB-3166 with or without the addition of palmitate or BAPTA. RESULTS: TVB-3166 treatment leads to a marked inhibition of proliferation in tamoxifen-resistant cells compared to the parental cells. Additionally, TVB-3166 significantly inhibited tamoxifen-resistant breast tumor growth in mice and decreased proliferation of primary tumor explants compared to untreated controls. FASN inhibition significantly reduced ERα levels most prominently in endocrine-resistant cells and altered its subcellular localization. Furthermore, we showed that the reduction of ERα expression upon TVB-3166 treatment is mediated through the induction of endoplasmic reticulum stress. CONCLUSION: Our preclinical data provide evidence that FASN inhibition by TVB-3166 presents a promising therapeutic strategy for the treatment of endocrine-resistant breast cancer. Further clinical development of FASN inhibitors for endocrine-resistant breast cancer should be considered.


Subject(s)
Breast Neoplasms , Enzyme Inhibitors/therapeutic use , Fatty Acid Synthase, Type I/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Fatty Acid Synthase, Type I/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Tamoxifen/pharmacology
4.
Breast Cancer Res Treat ; 185(2): 343-357, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33057995

ABSTRACT

PURPOSE: Cancer stem cells (CSCs) are highly tumorigenic, spared by chemotherapy, sustain tumor growth, and are implicated in tumor recurrence after conventional therapies in triple negative breast cancer (TNBC). Lysine-specific histone demethylase 1A (KDM1A) is highly expressed in several human malignancies and CSCs including TNBC. However, the precise mechanistic role of KDM1A in CSC functions and therapeutic utility of KDM1A inhibitor for treating TNBC is poorly understood. METHODS: The effect of KDM1A inhibition on cell viability, apoptosis, and invasion were examined by Cell Titer Glo, Caspase 3/7 Glo, and matrigel invasion assays, respectively. Stemness and self-renewal of CSCs were examined using mammosphere formation and extreme limiting dilution assays. Mechanistic studies were conducted using RNA-sequencing, RT-qPCR, Western blotting and reporter gene assays. Mouse xenograft and patient derived xenograft models were used for preclinical evaluation of KDM1A inhibitor. RESULTS: TCGA data sets indicated that KDM1A is highly expressed in TNBC. CSCs express high levels of KDM1A and inhibition of KDM1A reduced the CSCs enrichment in TNBC cells. KDM1A inhibition reduced cell viability, mammosphere formation, self-renewal and promoted apoptosis of CSCs. Mechanistic studies suggested that IL6-JAK-STAT3 and EMT pathways were downregulated in KDM1A knockdown and KDM1A inhibitor treated cells. Importantly, doxycycline inducible knockout of KDM1A reduced tumor progression in orthotopic xenograft models and KDM1A inhibitor NCD38 treatment significantly reduced tumor growth in patient derived xenograft (PDX) models. CONCLUSIONS: Our results establish that KDM1A inhibition mitigates CSCs functions via inhibition of STAT3 and EMT signaling, and KDM1A inhibitor NCD38 may represent a novel class of drug for treating TNBC.


Subject(s)
Histone Demethylases , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Mice , Neoplasm Recurrence, Local , Neoplastic Stem Cells , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
5.
Lasers Surg Med ; 53(10): 1386-1394, 2021 12.
Article in English | MEDLINE | ID: mdl-34130353

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite rapid advances and discoveries in medical imaging, monitoring therapeutic efficacy for malignant gliomas and monitoring tumor vasculature remains problematic. The purpose of this study is to utilize optical coherence angiography for vasculature characterization inside and surrounding brain tumors in a murine xenograft brain tumor model. Features included in our analysis include fractional blood volume, vessel tortuosity, diameter, orientation, and directionality. STUDY DESIGN/MATERIALS AND METHODS: In this study, five tumorous mice models at 4 weeks of age were imaged. Human glioblastoma cells were injected into the brain and allowed to grow for 4 weeks and then imaged using optical coherence tomography. RESULTS: Results suggest that blood vessels outside the tumor contain a greater fractional blood volume as compared with vessels inside the tumor. Vessels inside the tumor are more tortuous as compared with those outside the tumor. Results indicate that vessels near the tumor margin are directed inward towards the tumor while normal vessels show a more random orientation. CONCLUSION: Quantification of vascular microenvironments in brain gliomas can provide functional vascular parameters to aid various diagnostic and therapeutic studies. © 2021 Wiley Periodicals LLC.


Subject(s)
Brain Neoplasms , Angiography , Animals , Brain Neoplasms/diagnostic imaging , Cell Differentiation , Fluorescein Angiography , Humans , Mice , Microvessels/diagnostic imaging , Tomography, Optical Coherence , Tumor Microenvironment
6.
Br J Cancer ; 122(11): 1630-1637, 2020 05.
Article in English | MEDLINE | ID: mdl-32238921

ABSTRACT

BACKGROUND: In this first-in-human, Phase 1 study of a microRNA-based cancer therapy, the recommended Phase 2 dose (RP2D) of MRX34, a liposomal mimic of microRNA-34a (miR-34a), was determined and evaluated in patients with advanced solid tumours. METHODS: Adults with various solid tumours refractory to standard treatments were enrolled in 3 + 3 dose-escalation cohorts and, following RP2D determination, expansion cohorts. MRX34, with oral dexamethasone premedication, was given intravenously daily for 5 days in 3-week cycles. RESULTS: Common all-cause adverse events observed in 85 patients enrolled included fever (% all grade/G3: 72/4), chills (53/14), fatigue (51/9), back/neck pain (36/5), nausea (36/1) and dyspnoea (25/4). The RP2D was 70 mg/m2 for hepatocellular carcinoma (HCC) and 93 mg/m2 for non-HCC cancers. Pharmacodynamic results showed delivery of miR-34a to tumours, and dose-dependent modulation of target gene expression in white blood cells. Three patients had PRs and 16 had SD lasting ≥4 cycles (median, 19 weeks, range, 11-55). CONCLUSION: MRX34 treatment with dexamethasone premedication demonstrated a manageable toxicity profile in most patients and some clinical activity. Although the trial was closed early due to serious immune-mediated AEs that resulted in four patient deaths, dose-dependent modulation of relevant target genes provides proof-of-concept for miRNA-based cancer therapy. CLINICAL TRIAL REGISTRATION: NCT01829971.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , MicroRNAs/administration & dosage , MicroRNAs/adverse effects , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Female , Humans , Liposomes/adverse effects , Liposomes/pharmacokinetics , Male , Maximum Tolerated Dose , MicroRNAs/pharmacokinetics , Middle Aged , Nanoparticles/administration & dosage , Nanoparticles/adverse effects
7.
Anal Chem ; 92(1): 1260-1267, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31765123

ABSTRACT

Antibody-drug conjugates (ADCs) have gained significant interest over the past few years due to their targeted delivery, higher efficacy, decreased toxicity and improved therapeutic index over conventional anticancer therapies. Sacituzumab govitecan (SG) is an ADC composed of a Trop-2-targeted antibody conjugated to the cytotoxic payload SN-38. SG is currently being evaluated in clinical trials of several solid cancers. In this nonclinical study, we have developed a highly sensitive and selective approach to measure free and total SN-38 and its glucuronidation metabolite (SN-38G) using stable isotope dilution (SID) ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). An efficient and fast hydrolysis procedure (2 h at 100 °C) was established to release SN-38, conjugated to the antibody by carbonate linkage. The assay involves the extraction of free SN-38, SN-38G by protein precipitation, and subsequent acid hydrolysis of the protein layer to release antibody-bound SN-38. The developed UHPLC-HRMS method resulted in good linearity (r2 ≥ 0.997), accuracy (RE ≤ ± 9.1%), precision (CVs ≤ 7.7%), and extraction recoveries (85.6-109.3%). The validated method was applied in the plasma and tumor of mice bearing human brain (U251) and breast (MDA-MB-468) tumor xenografts treated with a single dose (0.5 mg) of SG for 6 h. Results revealed the presence of trace level of SN-38G and free SN-38 in plasma, which suggests an improved therapeutic index of SG. The established method makes a significant contribution to the assessment of SG in different cancers.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Disease Models, Animal , Immunoconjugates/pharmacology , Indicator Dilution Techniques , Irinotecan/analysis , Irinotecan/pharmacology , Administration, Intravenous , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/pharmacology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Irinotecan/chemistry , Mass Spectrometry , Mice , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy
8.
Mol Carcinog ; 59(3): 281-292, 2020 03.
Article in English | MEDLINE | ID: mdl-31872914

ABSTRACT

Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.


Subject(s)
Cerebellar Neoplasms/metabolism , Co-Repressor Proteins/metabolism , Medulloblastoma/metabolism , NF-kappa B/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Co-Repressor Proteins/analysis , Co-Repressor Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Transcription Factors/analysis , Transcription Factors/genetics
9.
J Transl Med ; 16(1): 142, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843811

ABSTRACT

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Cancer Vaccines/immunology , Dendritic Cells/immunology , Glioblastoma/immunology , Glioblastoma/therapy , Adult , Aged , Brain Neoplasms/diagnosis , Cancer Vaccines/adverse effects , Endpoint Determination , Female , Glioblastoma/diagnosis , Humans , Male , Middle Aged , Prognosis , Survival Analysis , Treatment Outcome , Young Adult
10.
J Transl Med ; 16(1): 179, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29958537

ABSTRACT

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

11.
Mol Carcinog ; 56(11): 2355-2371, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28618012

ABSTRACT

Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , Metabolome , Metabolomics/methods , Adult , Brain/pathology , Brain Neoplasms/pathology , Child , Glioma/pathology , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods
12.
Invest New Drugs ; 35(2): 180-188, 2017 04.
Article in English | MEDLINE | ID: mdl-27917453

ABSTRACT

Purpose Naturally occurring tumor suppressor microRNA-34a (miR-34a) downregulates the expression of >30 oncogenes across multiple oncogenic pathways, as well as genes involved in tumor immune evasion, but is lost or under-expressed in many malignancies. This first-in-human, phase I study assessed the maximum tolerated dose (MTD), safety, pharmacokinetics, and clinical activity of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumors. Patients and Methods Adult patients with solid tumors refractory to standard treatment were enrolled in a standard 3 + 3 dose escalation trial. MRX34 was given intravenously twice weekly (BIW) for three weeks in 4-week cycles. Results Forty-seven patients with various solid tumors, including hepatocellular carcinoma (HCC; n = 14), were enrolled. Median age was 60 years, median prior therapies was 4 (range, 1-12), and most were Caucasian (68%) and male (57%). Most common adverse events (AEs) included fever (all grade %/G3%: 64/2), fatigue (57/13), back pain (57/11), nausea (49/2), diarrhea (40/11), anorexia (36/4), and vomiting (34/4). Laboratory abnormalities included lymphopenia (G3%/G4%: 23/9), neutropenia (13/11), thrombocytopenia (17/0), increased AST (19/4), hyperglycemia (13/2), and hyponatremia (19/2). Dexamethasone premedication was required to manage infusion-related AEs. The MTD for non-HCC patients was 110 mg/m2, with two patients experiencing dose-limiting toxicities of G3 hypoxia and enteritis at 124 mg/m2. The half-life was >24 h, and Cmax and AUC increased with increasing dose. One patient with HCC achieved a prolonged confirmed PR lasting 48 weeks, and four patients experienced SD lasting ≥4 cycles. Conclusion MRX34 treatment with dexamethasone premedication was associated with acceptable safety and showed evidence of antitumor activity in a subset of patients with refractory advanced solid tumors. The MTD for the BIW schedule was 110 mg/m2 for non-HCC and 93 mg/m2 for HCC patients. Additional dose schedules of MRX34 have been explored to improve tolerability.


Subject(s)
Antineoplastic Agents/administration & dosage , MicroRNAs/administration & dosage , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Drug Administration Schedule , Female , Humans , Liposomes , Male , Maximum Tolerated Dose , MicroRNAs/adverse effects , MicroRNAs/pharmacokinetics , MicroRNAs/therapeutic use , Middle Aged , Nanoparticles/administration & dosage , Nanoparticles/adverse effects , Neoplasms/metabolism , Treatment Outcome
13.
Neurobiol Dis ; 85: 227-233, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26094595

ABSTRACT

Glioblastoma (GBM, Grade IV astrocytoma) is the most common and most aggressive of the primary malignant brain tumors in adults. Hypoxia is a distinct feature in GBM and plays a significant role in tumor progression, resistance to treatment and poor outcomes. This review considers the effects of hypoxia on astrocytic tumors and the mechanisms that contribute to tumor progression and therapeutic resistance, with a focus on the vascular changes, chemotaxic signaling pathways and metabolic alterations involved.


Subject(s)
Astrocytoma/physiopathology , Astrocytoma/therapy , Brain Neoplasms/physiopathology , Brain Neoplasms/therapy , Hypoxia/physiopathology , Animals , Humans
14.
Breast Cancer Res Treat ; 149(1): 49-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25476497

ABSTRACT

Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERα) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ≥ 30.0 kg/m(2)) or normal weight (N; BMI 18.5-24.9 kg/m(2)) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERα activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted.


Subject(s)
Aromatase/biosynthesis , Breast Neoplasms/genetics , Dinoprostone/biosynthesis , Interleukin-6/genetics , Obesity/genetics , Adipocytes/enzymology , Aromatase Inhibitors/administration & dosage , Breast Neoplasms/complications , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2 Inhibitors/administration & dosage , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , MCF-7 Cells , Obesity/complications , Obesity/pathology
15.
J Neurooncol ; 124(3): 365-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26108658

ABSTRACT

Glioblastoma multiforme (GBM) is among the most highly vascularized of solid tumors, contributing to the infiltrative nature of the disease, and conferring poor outcome. Due to the critical dependency of GBM on growth of new endothelial vasculature, we evaluated the preclinical activity of a novel adenoviral gene therapy that targets the endothelium within newly formed blood vessels for apoptosis. VB-111, currently in phase II clinical trials, consists of a non-replicating Adenovirus 5 (El deleted) carrying a proapoptotic human Fas-chimera (transgene) under the control of a modified murine promoter (PPE-1-3×) which specifically targets endothelial cells within the tumor vasculature. Here we report that a single intravenous dose of 2.5 × 10(11) or 1 × 10(11) VPs was sufficient to extend survival in nude rats bearing U87MG-luc2 or nude mice bearing U251-luc, respectively. Bioluminescence imaging of nude rats showed that VB-111 effectively inhibited tumor growth within four weeks of treatment. This was confirmed in a select group of animals by MRI. In our mouse model we observed that 3 of 10 nude mice treated with VB-111 completely lost U251 luciferase signal and were considered long term survivors. To assess the antiangiogenic effects of VB-111, we evaluated the tumor-associated microvaculature by CD31, a common marker of neovascularization, and found a significant decrease in the microvessel density by IHC. We further assessed the neovasculature by confocal microscopy and found that VB-111 inhibits vascular density in two separate mouse models bearing U251-RFP xenografts. Collectively, this study supports the clinical development of VB-111 as a treatment for GBM.


Subject(s)
Adenoviridae/genetics , Angiogenesis Inducing Agents/therapeutic use , Brain Neoplasms/therapy , Glioblastoma/therapy , Neovascularization, Pathologic/therapy , Adenoviridae/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Genetic Therapy/methods , Humans , Magnetic Resonance Imaging , Mice , Mice, Nude , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Tumor Necrosis Factor , Statistics, Nonparametric , Xenograft Model Antitumor Assays , fas Receptor/genetics
16.
Bioorg Med Chem Lett ; 25(20): 4544-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26341136

ABSTRACT

Glioblastoma, the most common form of malignant primary brain tumor, is characterized by resistance to apoptosis, which is largely responsible for the low effectiveness of the classical chemotherapeutic approaches based on apoptosis induction in cancer cells. Previously, a fungal secondary metabolite ophiobolin A was found to have significant activity against apoptosis-resistant glioblastoma cells through the induction of a non-apoptotic cell death, thus, offering an innovative strategy to combat this type of cancer. The current work describes the results of a preliminary evaluation of ophiobolin A in an in vivo glioblastoma model and its chemical derivatization to establish first synthetically generated structure-activity relationship. The synthetic work has also led to the discovery of a unique reaction of ophiobolin A with primary amines suggesting the possibility of pyrrolylation of lysine residues on its intracellular target protein(s).


Subject(s)
Amines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Animals , Antineoplastic Agents/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Mice , Molecular Structure , Sesterterpenes/metabolism , Structure-Activity Relationship
17.
Oncogene ; 43(14): 1063-1074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374406

ABSTRACT

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.


Subject(s)
Lung Neoplasms , Membrane Proteins , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Lipoylation , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Peptides , Triple Negative Breast Neoplasms/genetics
18.
Breast Cancer Res ; 15(4): R59, 2013.
Article in English | MEDLINE | ID: mdl-23880059

ABSTRACT

INTRODUCTION: Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-associated circulating factors in the blood enhance estrogen receptor alpha (ERα) positive breast cancer cell viability and growth. METHODS: Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass index (BMI) category (Control: 18.5 to 24.9 kg/m²; Obese: ≥30.0 kg/m²). The effects of patient sera on MCF-7 and T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively. Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERα activity were assessed to determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the relative contribution of these signaling pathways, cells grown in patient sera were treated with various combinations of ERα, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different experimental conditions were made using one-way analysis of variance (ANOVA) and Student's t test. RESULTS: Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in genomic ERα activity following growth in obese versus control patient sera, we observed a dramatic reduction in cell viability and growth after concurrent inhibition of the ERα and PI3K/Akt signaling pathways. Further, we demonstrated that ERα inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation. Together, these data suggest that obesity promotes greater ERα positive breast cancer cell viability and growth through enhanced crosstalk between nongenomic ERα signaling and the PI3K/Akt and MAPK pathways. CONCLUSIONS: Circulating factors in the serum of obese postmenopausal women stimulate ERα positive breast cancer cell viability and growth by facilitating non-genomic ERα crosstalk with the PI3K/Akt and MAPK signaling pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERα positive postmenopausal breast cancer progression and endocrine therapy resistance.


Subject(s)
Breast Neoplasms/complications , Breast Neoplasms/metabolism , MAP Kinase Signaling System , Obesity/complications , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor Cross-Talk , Receptors, Estrogen/metabolism , Biomarkers/blood , Biomarkers/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Female , Humans , Middle Aged , Obesity/blood , Obesity/metabolism , Phosphoinositide-3 Kinase Inhibitors , Receptor, IGF Type 1/metabolism , Receptors, Estrogen/antagonists & inhibitors , Risk Factors
19.
Mol Carcinog ; 52(6): 446-58, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22290600

ABSTRACT

The prevalence of obesity, an established risk and progression factor for postmenopausal breast cancer, remains high in US women. Activation of Akt/mammalian target of rapamycin (mTOR) signaling plays a key role in the obesity-breast cancer link. However, the impact of weight normalization in obese postmenopausal women on breast tumorigenesis and/or Akt/mTOR activation is poorly characterized. To model this, ovariectomized female C57BL/6 mice were fed a control diet (n = 20), a calorie restriction (CR) regimen (n = 20), or a diet-induced obesity (DIO) diet (n = 30). At week 17, DIO mice were switched to control diet, resulting in formerly obese (FOb) mice with weights identical to the controls by week 20. MMTV-Wnt-1 mammary tumor cells were injected at 20 wk into each mouse. Two weeks post-injection, vehicle or the mTOR inhibitor RAD001 at 10 or 15 mg/kg body weight (n = 10/diet group) was administered by gavage twice/week until termination. Relative to controls, CR mice had decreased (and DIO mice had increased) serum insulin-like growth factor-1 (IGF-1) and phosphorylation of Akt/mTOR pathway components. RAD001 decreased tumor growth in the CR, control, and FOb mice. Wnt-1 tumor cells treated in vitro with serum from mice from each group established that diet-dependent circulating factors contribute to tumor growth and invasiveness. These findings suggest weight normalization in obese mice does not immediately reverse tumor progression or Akt/mTOR activation. Treatment with RAD001 blocked mammary tumor development and mTOR activation observed in the FOb mice, suggesting combination of lifestyle and pharmacologic strategies may be effective for breaking the obesity-breast cancer link.


Subject(s)
Antineoplastic Agents/therapeutic use , Mammary Neoplasms, Experimental/complications , Mammary Neoplasms, Experimental/drug therapy , Obesity/complications , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/analogs & derivatives , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line, Tumor , Diet , Everolimus , Female , Hormones/blood , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Obese , Signal Transduction/drug effects , Sirolimus/therapeutic use , Weight Loss/drug effects , Wnt1 Protein/metabolism
20.
Clin Cancer Res ; 29(24): 5021-5030, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37363965

ABSTRACT

PURPOSE: To overcome resistance to antihormonal and HER2-targeted agents mediated by cyclin D1-CDK4/6 complex, we proposed an oral combination of the HER2 inhibitor tucatinib, aromatase inhibitor letrozole, and CDK4/6 inhibitor palbociclib (TLP combination) for treatment of HR+/HER2+ metastatic breast cancer (MBC). PATIENTS AND METHODS: Phase Ib/II TLP trial (NCT03054363) enrolled patients with HR+/HER2+ MBC treated with ≥2 HER2-targeted agents. The phase Ib primary endpoint was safety of the regimen evaluated by NCI CTCAE version 4.3. The phase II primary endpoint was efficacy by median progression-free survival (mPFS). RESULTS: Forty-two women ages 22 to 81 years were enrolled. Patients received a median of two lines of therapy in the metastatic setting, 71.4% had visceral disease, 35.7% had CNS disease. The most common treatment-emergent adverse events (AE) of grade ≥3 were neutropenia (64.3%), leukopenia (23.8%), diarrhea (19.0%), and fatigue (14.3%). Tucatinib increased AUC10-19 hours of palbociclib 1.7-fold, requiring palbociclib dose reduction from 125 to 75 mg daily. In 40 response-evaluable patients, mPFS was 8.4 months, with similar mPFS in non-CNS and CNS cohorts (10.0 months vs. 8.2 months; P = 0.9). Overall response rate was 44.5%, median duration of response was 13.9 months, and clinical benefit rate was 70.4%; 60% of patients were on treatment for ≥6 months, 25% for ≥1 year, and 10% for ≥2 years. In the CNS cohort, 26.6% of patients remained on study for ≥1 year. CONCLUSIONS: TLP combination was safe and tolerable. AEs were expected and manageable with supportive therapy and dose reductions. TLP showed excellent efficacy for an all-oral chemotherapy-free regimen warranting further testing. See related commentary by Huppert and Rugo, p. 4993.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Letrozole , Breast Neoplasms/pathology , Receptor, ErbB-2/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL