Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Metab Eng ; 49: 178-191, 2018 09.
Article in English | MEDLINE | ID: mdl-30138679

ABSTRACT

Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.


Subject(s)
Flavoring Agents/metabolism , Genes, Fungal , Genomics , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
PLoS Genet ; 10(2): e1004161, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24550744

ABSTRACT

The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.


Subject(s)
Dekkera/genetics , Genome , Phylogeny , Wine/microbiology , Australia , Biofuels/microbiology , Dekkera/growth & development , Dekkera/metabolism , Fermentation , Genomics , Ploidies , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
Appl Microbiol Biotechnol ; 99(20): 8597-609, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26099331

ABSTRACT

To remain competitive in increasingly overcrowded markets, yeast strain development programmes are crucial for fermentation-based food and beverage industries. In a winemaking context, there are many yeast phenotypes that stand to be improved. For example, winemakers endeavouring to produce sweet dessert wines wrestle with fermentation challenges particular to fermenting high-sugar juices, which can lead to elevated volatile acidity levels and extended fermentation times. In the current study, we used natural yeast breeding techniques to generate Saccharomyces spp. interspecific hybrids as a non-genetically modified (GM) strategy to introduce targeted improvements in important, wine-relevant traits. The hybrids were generated by mating a robust wine strain of Saccharomyces cerevisiae with a wine isolate of Saccharomyces bayanus, a species previously reported to produce wines with low concentrations of acetic acid. Two hybrids generated from the cross showed robust fermentation properties in high-sugar grape juice and produced botrytised Riesling wines with much lower concentrations of acetic acid relative to the industrial wine yeast parent. The hybrids also displayed suitability for icewine production when bench-marked against an industry standard icewine yeast, by delivering icewines with lower levels of acetic acid. Additionally, the hybrid yeast produced wines with novel aroma and flavour profiles and established that choice of yeast strain impacts on wine colour. These new hybrid yeasts display the desired targeted fermentation phenotypes from both parents, robust fermentation in high-sugar juice and the production of wines with low volatile acidity, thus establishing their suitability for wine styles that are traditionally troubled by excessive volatile acidity levels.


Subject(s)
Chimera , Food Microbiology , Saccharomyces/genetics , Saccharomyces/metabolism , Wine/microbiology , Acetic Acid/metabolism , Carbohydrate Metabolism , Color , Genotype , Phenotype , Saccharomyces/isolation & purification , Taste , Temperature
4.
PLoS Genet ; 7(2): e1001287, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21304888

ABSTRACT

Human intervention has subjected the yeast Saccharomyces cerevisiae to multiple rounds of independent domestication and thousands of generations of artificial selection. As a result, this species comprises a genetically diverse collection of natural isolates as well as domesticated strains that are used in specific industrial applications. However the scope of genetic diversity that was captured during the domesticated evolution of the industrial representatives of this important organism remains to be determined. To begin to address this, we have produced whole-genome assemblies of six commercial strains of S. cerevisiae (four wine and two brewing strains). These represent the first genome assemblies produced from S. cerevisiae strains in their industrially-used forms and the first high-quality assemblies for S. cerevisiae strains used in brewing. By comparing these sequences to six existing high-coverage S. cerevisiae genome assemblies, clear signatures were found that defined each industrial class of yeast. This genetic variation was comprised of both single nucleotide polymorphisms and large-scale insertions and deletions, with the latter often being associated with ORF heterogeneity between strains. This included the discovery of more than twenty probable genes that had not been identified previously in the S. cerevisiae genome. Comparison of this large number of S. cerevisiae strains also enabled the characterization of a cluster of five ORFs that have integrated into the genomes of the wine and bioethanol strains on multiple occasions and at diverse genomic locations via what appears to involve the resolution of a circular DNA intermediate. This work suggests that, despite the scrutiny that has been directed at the yeast genome, there remains a significant reservoir of ORFs and novel modes of genetic transmission that may have significant phenotypic impact in this important model and industrial species.


Subject(s)
Beer/microbiology , Genome, Fungal/genetics , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Wine/microbiology , Base Sequence , Computational Biology , Evolution, Molecular , Genetic Variation , INDEL Mutation/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Polymorphism, Single Nucleotide/genetics
5.
BMC Genomics ; 13: 373, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863143

ABSTRACT

BACKGROUND: Oenococcus oeni, a member of the lactic acid bacteria, is one of a limited number of microorganisms that not only survive, but actively proliferate in wine. It is also unusual as, unlike the majority of bacteria present in wine, it is beneficial to wine quality rather than causing spoilage. These benefits are realised primarily through catalysing malolactic fermentation, but also through imparting other positive sensory properties. However, many of these industrially-important secondary attributes have been shown to be strain-dependent and their genetic basis it yet to be determined. RESULTS: In order to investigate the scale and scope of genetic variation in O. oeni, we have performed whole-genome sequencing on eleven strains of this bacterium, bringing the total number of strains for which genome sequences are available to fourteen. While any single strain of O. oeni was shown to contain around 1800 protein-coding genes, in-depth comparative annotation based on genomic synteny and protein orthology identified over 2800 orthologous open reading frames that comprise the pan genome of this species, and less than 1200 genes that make up the conserved genomic core present in all of the strains. The expansion of the pan genome relative to the coding potential of individual strains was shown to be due to the varied presence and location of multiple distinct bacteriophage sequences and also in various metabolic functions with potential impacts on the industrial performance of this species, including cell wall exopolysaccharide biosynthesis, sugar transport and utilisation and amino acid biosynthesis. CONCLUSIONS: By providing a large cohort of sequenced strains, this study provides a broad insight into the genetic variation present within O. oeni. This data is vital to understanding and harnessing the phenotypic variation present in this economically-important species.


Subject(s)
Genetic Variation/genetics , Genome, Bacterial/genetics , Genomics/methods , Oenococcus/genetics
6.
FEMS Yeast Res ; 12(1): 88-96, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22136070

ABSTRACT

The vast majority of wine fermentations are performed principally by Saccharomyces cerevisiae. However, there are a growing number of instances in which other species of Saccharomyces play a predominant role. Interestingly, the presence of these other yeast species generally occurs via the formation of interspecific hybrids that contain genomic contributions from both S. cerevisiae and non-S. cerevisiae species. However, despite the large number of wine strains that are characterized at the genomic level, there remains limited information regarding the detailed genomic structure of hybrids used in winemaking. To address this, we describe the genome sequence of the thiol-releasing commercial wine yeast hybrid VIN7. VIN7 is shown to be an almost complete allotriploid interspecific hybrid that is comprised of a heterozygous diploid complement of S. cerevisiae chromosomes and a haploid Saccharomyces kudriavzevii genomic contribution. Both parental strains appear to be of European origin, with the S. cerevisiae parent being closely related to, but distinct from, the commercial wine yeasts QA23 and EC1118. In addition, several instances of chromosomal rearrangement between S. cerevisiae and S. kudriavzevii sequences were observed that may mark the early stages of hybrid genome consolidation.


Subject(s)
Chimera/genetics , Genome, Fungal , Saccharomyces/genetics , Triploidy , Wine/microbiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Evolution, Molecular , Gene Rearrangement , Molecular Sequence Data , Recombination, Genetic , Saccharomyces/isolation & purification , Sequence Analysis, DNA
7.
Appl Microbiol Biotechnol ; 91(2): 365-75, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21476141

ABSTRACT

Chardonnay, being the predominant white wine-grape cultivar in the Australian wine sector, is subject to widely varying winemaking processes with the aim of producing a variety of wine styles. Therefore, juice composition might not always be ideal for optimal fermentation outcomes. Our aim was to better understand the composition of Chardonnay juice and how compositional parameters impact on fermentation outcomes. This was achieved through a survey of 96 commercially prepared Chardonnay juices during the 2009 vintage. Common juice variables were estimated using near infrared spectroscopy, and elemental composition was determined using radial view inductively coupled plasma optical emission spectrometry. The influence of elemental composition on fermentation outcomes was assessed by fermentation of a defined medium formulated to reflect the composition and range of concentrations as determined by the juice survey. Yeast (Saccharomyces cerevisiae) strain effects were also assessed. Key parameters influencing fermentation outcomes were verified by laboratory scale fermentation of Chardonnay juice. This exploration of Chardonnay juice identified interactions between juice pH and potassium concentration as key factors impacting on fermentation performance and wine quality. Outcomes differed depending on yeast strain.


Subject(s)
Saccharomyces cerevisiae/metabolism , Vitis/chemistry , Vitis/microbiology , Wine/analysis , Wine/microbiology , Acetic Acid , Australia , Culture Media/chemistry , Fermentation , Food Microbiology , Hydrogen-Ion Concentration , Industrial Microbiology , Kinetics , Potassium/metabolism , Saccharomyces cerevisiae/growth & development
8.
Appl Microbiol Biotechnol ; 89(5): 1621-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21076919

ABSTRACT

High-throughput methodologies to screen large numbers of microorganisms necessitate the use of small-scale culture vessels. In this context, an increasing number of researchers are turning to microtiter plate (MTP) formats to conduct experiments. MTPs are now widely used as a culturing vessel for phenotypic screening of aerobic laboratory cultures, and their suitability has been assessed for a range of applications. The work presented here extends these previous studies by assessing the metabolic footprint of MTP fermentation. A comparison of Chardonnay grape juice fermentation in MTPs with fermentations performed in air-locked (self-induced anaerobic) and cotton-plugged (aerobic) flasks was made. Maximum growth rates and biomass accumulation of yeast cultures grown in MTPs were indistinguishable from self-induced anaerobic flask cultures. Metabolic profiles measured differed depending on the metabolite. While glycerol and acetate accumulation mirrored that of self-induced anaerobic cultures, ethanol accumulation in MTP ferments was limited by the increased propensity of this volatile metabolite for evaporation in microlitre-scale culture format. The data illustrates that microplate cultures can be used as a replacement for self-induced anaerobic flasks in some instances and provide a useful and economical platform for the screening of industrial strains and culture media.


Subject(s)
Food Industry/methods , Industrial Microbiology/methods , Wine/microbiology , Yeasts/growth & development , Yeasts/metabolism , Ethanol/metabolism , High-Throughput Screening Assays/methods , Plant Extracts/metabolism , Vitis/chemistry
9.
Appl Microbiol Biotechnol ; 91(3): 603-12, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21538112

ABSTRACT

Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.


Subject(s)
Fermentation/genetics , Odorants , Saccharomyces/metabolism , Wine/microbiology , Chimera , Food Industry/methods , Genetic Engineering , Polymerase Chain Reaction , Saccharomyces/genetics , Taste
10.
Appl Microbiol Biotechnol ; 87(4): 1447-54, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20393705

ABSTRACT

There are five retrotransposon families in Saccharomyces cerevisiae, three (Ty1, Ty2, and Ty3) of which are known to be transcriptionally active. Early investigations reported yeast retrotransposons to be stress-induced; however, microarray-based studies do not report retrotransposition-related Gene Ontology (GO) categories in the ethanol stress response of S. cerevisiae. In this study, microarray technology was used to investigate the ethanol stress response of S. cerevisiae W303-1A, and the highest stress-induced GO categories, based on z-score, were found to be retrotransposition-related, namely, Retrotransposition Nucleocapsid and Transposition, RNA-Mediated. Further investigation, involving reanalysis of previously published results on the stress response of S. cerevisiae, identified the absence of annotation for retrotransposon genes and associated GO categories and their omission during the printing of spotted arrays as two reasons why these categories in previous gene expression studies on the ethanol stress response of yeast were not reported.


Subject(s)
Ethanol/metabolism , Retroelements , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal
11.
Appl Microbiol Biotechnol ; 88(1): 231-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20661734

ABSTRACT

Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD(+)/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.


Subject(s)
Drug Tolerance , Ethanol/toxicity , Gene Expression Profiling , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Carbon/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glycerol/metabolism , Glycolysis , NAD/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism
12.
Appl Microbiol Biotechnol ; 86(2): 681-91, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20111862

ABSTRACT

Many bacteria display substantial intra-specific genomic diversity that produces significant phenotypic variation between strains of the same species. Understanding the genetic basis of these strain-specific phenotypes is especially important for industrial microorganisms where these characters match individual strains to specific industrial processes. Oenococcus oeni, a bacterium used during winemaking, is one such industrial species where large numbers of strains show significant differences in commercially important industrial phenotypes. To ascertain the basis of these phenotypic differences, the genomic content of ten wine strains of O. oeni were mapped by array-based comparative genome hybridization (aCGH). These strains comprised a genomically diverse group in which large sections of the reference genome were often absent from individual strains. To place the aCGH results in context, whole genome sequence was obtained for one of these strains and compared with two previously sequenced, unrelated strains. While the three strains shared a core group of conserved ORFs, up to 10% of the coding potential of any one strain was specific to that isolate. The genome of O. oeni is therefore likely to be much larger than that present in any single strain and it is these strain-specific regions that are likely to be responsible for differences in industrial phenotypes.


Subject(s)
DNA, Bacterial/genetics , Genetic Variation , Genome, Bacterial , Oenococcus/genetics , Comparative Genomic Hybridization , DNA, Bacterial/chemistry , Food Microbiology , Molecular Sequence Data , Sequence Analysis, DNA
13.
J Ind Microbiol Biotechnol ; 37(2): 139-49, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19902282

ABSTRACT

Saccharomyces spp. are widely used for ethanologenic fermentations, however yeast metabolic rate and viability decrease as ethanol accumulates during fermentation, compromising ethanol yield. Improving ethanol tolerance in yeast should, therefore, reduce the impact of ethanol toxicity on fermentation performance. The purpose of the current work was to generate and characterise ethanol-tolerant yeast mutants by subjecting mutagenised and non-mutagenised populations of Saccharomyces cerevisiae W303-1A to adaptive evolution using ethanol stress as a selection pressure. Mutants CM1 (chemically mutagenised) and SM1 (spontaneous) had increased acclimation and growth rates when cultivated in sub-lethal ethanol concentrations, and their survivability in lethal ethanol concentrations was considerably improved compared with the parent strain. The mutants utilised glucose at a higher rate than the parent in the presence of ethanol and an initial glucose concentration of 20 g l(-1). At a glucose concentration of 100 g l(-1), SM1 had the highest glucose utilisation rate in the presence or absence of ethanol. The mutants produced substantially more glycerol than the parent and, although acetate was only detectable in ethanol-stressed cultures, both mutants produced more acetate than the parent. It is suggested that the increased ethanol tolerance of the mutants is due to their elevated glycerol production rates and the potential of this to increase the ratio of oxidised and reduced forms of nicotinamide adenine dinucleotide (NAD(+)/NADH) in an ethanol-compromised cell, stimulating glycolytic activity.


Subject(s)
Directed Molecular Evolution , Ethanol/pharmacology , Saccharomyces cerevisiae/genetics , Adaptation, Physiological , Culture Media/metabolism , Drug Resistance, Fungal , Ethanol/metabolism , Fermentation , Gene Deletion , Glucose/metabolism , Industrial Microbiology , Mutagenesis , Saccharomyces cerevisiae/drug effects , Temperature
14.
FEMS Yeast Res ; 9(8): 1208-16, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19799639

ABSTRACT

Trehalose is known to protect cells from various environmental assaults; however, its role in the ethanol tolerance of Saccharomyces cerevisiae remains controversial. Many previous studies report correlations between trehalose levels and ethanol tolerance across a variety of strains, yet variations in genetic background make it difficult to separate the impact of trehalose from other stress response factors. In the current study, investigations were conducted on the ethanol tolerance of S. cerevisiae BY4742 and BY4742 deletion strains, tsl1Delta and nth1Delta, across a range of ethanol concentrations. It was found that trehalose does play a role in ethanol tolerance at lethal ethanol concentrations, but not at sublethal ethanol concentrations; differences of 20-40% in the intracellular trehalose concentration did not provide any growth advantage for cells incubated in the presence of sublethal ethanol concentrations. It was speculated that the ethanol concentration-dependent nature of the trehalose effect supports a mechanism for trehalose in protecting cellular proteins from the damaging effects of ethanol.


Subject(s)
Ethanol/metabolism , Microbial Viability , Saccharomyces cerevisiae/physiology , Stress, Physiological , Trehalose/metabolism , Drug Resistance, Fungal , Ethanol/toxicity , Gene Deletion , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
15.
Front Microbiol ; 9: 1442, 2018.
Article in English | MEDLINE | ID: mdl-30034376

ABSTRACT

Wine yeast breeding programs utilizing interspecific hybridization deliver cost-effective tools to winemakers looking to differentiate their wines through the development of new wine styles. The addition of a non-Saccharomyces cerevisiae genome to a commercial wine yeast can generate novel phenotypes ranging from wine flavor and aroma diversity to improvements in targeted fermentation traits. In the current study we utilized a novel approach to screen isolates from an evolving population for increased fitness in a S. cerevisiae × S. uvarum interspecific hybrid previously generated to incorporate the targeted phenotype of lower volatile acidity production. Sequential grape-juice fermentations provided a selective environment from which to screen isolates. Chromosomal markers were used in a novel approach to identify isolates with potential increased fitness. A strain with increased fitness relative to its parents was isolated from an early timepoint in the evolving population, thereby minimizing the risk of introducing collateral mutations and potentially undesirable phenotypes. The evolved strain retained the desirable fermentation trait of reduced volatile acidity production, along with other winemaking traits of importance while exhibiting improved fermentation kinetics.

16.
Trends Biotechnol ; 25(8): 349-55, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17590464

ABSTRACT

Yeast research represents an important nexus between fundamental and applied research. Just as fundamental yeast research transitioned from classical, reductionist strategies to whole-genome techniques, whole-genome studies are advancing to the next level of biological research, referred to as systems biology. Industries that rely on high-performing yeast, such as the wine industry, are therefore poised to reap the many benefits that systems biology can provide. This includes the promise of strain development at speeds and costs which are unobtainable using current techniques. This article reviews the current state of whole-genome techniques available to yeast researchers and outlines how these processes can be used to obtain 'systems-level' information to provide insights into winemaking.


Subject(s)
Chromosome Mapping/methods , Fermentation , Genome, Fungal/genetics , Models, Biological , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Wine/microbiology , Computer Simulation , Industrial Microbiology/trends , Wine/classification
18.
Int J Food Microbiol ; 257: 216-224, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28688370

ABSTRACT

We report the first whole transcriptome RNAseq analysis of the wine-associated lactic acid bacterium Oenococcus oeni using a combination of reference-based mapping and de novo transcript assembly in three distinct strains during malolactic fermentation in Cabernet Sauvignon wine. Two of the strains (AWRIB551 and AWRIB552) exhibited similar transcriptomes relative to the third strain (AWRIB419) which was dissimilar by comparison. Significant intra-specific variation for genes related to glycolysis/gluconeogenesis, purine metabolism, aminoacyl-tRNA biosynthesis, ABC transporters and phosphotransferase systems was observed. Importantly, thirteen genes associated with the production of diacetyl, a commercially valuable aroma and flavour compound, were also found to be differentially expressed between the strains in a manner that correlated positively with total diacetyl production. This included a key strain-specific gene that is predicted to encode a l-lactate dehydrogenase that may enable l-lactic acid to be utilised as a precursor for the production of diacetyl. In conjunction with previous comparative genomic studies of O. oeni, this study progresses the understanding of genetic variations which contribute to the phenotypes of this industrially-important bacterium.


Subject(s)
Diacetyl/metabolism , Fermentation , Lactic Acid/metabolism , Oenococcus/genetics , Oenococcus/metabolism , Wine/microbiology , ATP-Binding Cassette Transporters/genetics , Base Sequence , DNA, Bacterial/genetics , Genetic Variation/genetics , Gluconeogenesis/genetics , Glycolysis/genetics , L-Lactate Dehydrogenase/genetics , Malate Dehydrogenase/genetics , Purines/metabolism , Sequence Analysis, DNA , Transcriptome/genetics
19.
Mol Biotechnol ; 23(1): 19-28, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12611266

ABSTRACT

Although a range of methods are available for determining protein concentration, many scientists encounter problems when quantifying proteins in the laboratory. The most commonly used methods for determining protein concentration in a modern biochemistry laboratory would probably be the Lowry and/or the Bradford protein assays. Other techniques, including direct spectrophotometric analysis and densitometry of stained protein gels, are applied, but perhaps to a lesser extent. However, the reliability of all of the above techniques is questionable and dependent to some extent on the protein to be assayed. In this paper we describe problems we encountered when using some of the foregoing techniques to quantify the concentration of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1), a nuclear enzyme found in most eukaryotes. We also describe how, by using a fluorescence-based assay and amino acid analysis, we overcame the problems we encountered.


Subject(s)
Proteins/analysis , Humans , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases , Proteins/standards , Quality Control , Reproducibility of Results , Sensitivity and Specificity
20.
Curr Opin Biotechnol ; 24(2): 192-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22947601

ABSTRACT

The application of Next Generation sequencing to comparative genomics is enabling in-depth characterization of genetic variation between wine yeast strains used in fermentation starter cultures. Knowledge from this work will be harnessed in strain development programs. As a result, winemakers will soon have at their disposal novel, improved yeast starter cultures displaying increased reliability and providing a means of tailoring wine sensory characteristics for new and ever-changing markets.


Subject(s)
Genome, Fungal/genetics , Genomics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Wine/microbiology , Fermentation , Genetic Markers , Genetic Variation/genetics , Multigene Family/genetics , Phylogeny , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL