Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 710
Filter
Add more filters

Publication year range
1.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289102

ABSTRACT

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Humans , Mammals/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Induced Silencing Complex/metabolism , Subgenomic RNA , Viral Proteins/metabolism , Virus Replication , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology
2.
Proteomics ; : e2400078, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824665

ABSTRACT

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

3.
Biochemistry ; 63(14): 1723-1729, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38941592

ABSTRACT

Protein advanced glycation end products (AGEs) can be formed via nonenzymatic glycation and accumulated intracellularly to disrupt cellular homeostasis for protein clearance. Here, we investigated the formation particulars of intracellular protein AGEs and sought to elucidate the molecular events implicated in the impact of cellular clearance systems. The formation and accumulation of intracellular protein AGEs increased protein aggregation and protease resistance, potentially overwhelming the ubiquitin-proteasome system (UPS). At high levels of protein AGEs, the abundance of many E3 ligases decreased and the overall ubiquitination level was reduced, all of which indicated decreased UPS activity. On the other hand, autophagy activity was stimulated, as evidenced by the upregulation of autophagy marker LC3II and important proteins in autophagosome and autolysosome formation, as well as downregulation of mTOR. Understanding the functional impacts of intracellular protein AGEs on the UPS and autophagy could pave the way for the future development of pharmaceutical agents targeting AGE-related diseases.


Subject(s)
Autophagy , Glycation End Products, Advanced , Homeostasis , Glycation End Products, Advanced/metabolism , Humans , Autophagy/physiology , Epithelial Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals
4.
Stroke ; 55(8): 2151-2162, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946544

ABSTRACT

BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.


Subject(s)
Ischemic Stroke , Mice, Knockout , Neurons , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/agonists , Mice , Ischemic Stroke/metabolism , Male , Neurons/metabolism , Neurons/drug effects , Stroke Rehabilitation , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL
5.
Neurobiol Dis ; : 106692, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370050

ABSTRACT

The neuropsychiatric symptoms are common in Wilson's disease (WD) patients. However, it remains unclear about the associated functional brain networks. In this study, source localization-based functional connectivity analysis of close-eye resting-state electroencephalography (EEG) were implemented to assess the characteristics of functional networks in 17 WD patients with neurological involvements and 17 healthy controls (HCs). The weighted phase-lag index (wPLI) was subsequently calculated in source space across five different frequency bands and the resulting connectivity matrix was transformed into a weighted graph whose structure was measured by five graphical analysis indicators, which were finally correlated with clinical scores. Compared to HCs, WD patients revealed disconnected sub-networks in delta, theta and alpha bands. Moreover, WD patients exhibited significantly reduced global clustering coefficients and small-worldness in all five frequency bands. In WD group, the severity of neurological symptoms and structural brain abnormalities were significantly correlated with disrupted functional networks. In conclusion, our study demonstrated that functional network deficits in WD can reflect the severity of their neurological symptoms and structural brain abnormalities. Resting-state EEG may be used as a marker of brain injury in WD.

6.
Neurobiol Dis ; 200: 106635, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39128813

ABSTRACT

Early-onset epilepsy following ischemic stroke is a severe neurological condition, the pathogenesis of which remains incompletely understood. Recent studies suggest that Neural stem/progenitor cells (NSPCs) play a crucial role in the disease process, yet the precise molecular mechanisms regulating NSPCs have not been thoroughly investigated. This study utilized single-cell transcriptome sequencing and bioinformatics analysis to identify disease-related genes, which were subsequently validated in both in vitro and in vivo experiments. The findings revealed that Hsp90aa1 (heat shock protein 90 kDa alpha, class A member 1), Jun proto-oncogene (JUN), and CC Motif Ligation 2 (Ccl2) constitute an important regulatory axis influencing the migration and differentiation of NSPCs, potentially impacting the onset and progression of early-onset epilepsy post-ischemic stroke. Additionally, the expression of Hsp90aa1 was found to influence the likelihood of seizure occurrence and the severity of brain ischemia.


Subject(s)
Cell Differentiation , Cell Movement , Epilepsy , HSP90 Heat-Shock Proteins , Ischemic Stroke , Neural Stem Cells , Animals , Male , Mice , Cell Differentiation/physiology , Cell Movement/physiology , Disease Progression , Epilepsy/metabolism , Epilepsy/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-jun
7.
Int J Cancer ; 154(3): 477-487, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37728072

ABSTRACT

Geographic and sex differences in esophageal cancer have been reported in China, but data are lacking at the local level. We aimed to investigate geographic and sex disparities in esophageal cancer incidence among Chinese counties and whether county-level socioeconomic status was associated with these variations. We obtained esophageal cancer data from 2015 to 2017 for 782 counties from population-based cancer registries in China. We calculated age-standardized incidence rates and male-to-female incidence rate ratios (IRRs) by county. We performed hotspot analysis to identify geographical clusters. We used negative binomial regression models to analyze the association between incidence rates and county-level socioeconomic factors. There were significant geographic disparities in esophageal cancer incidence, with 8.1 times higher rate in the 90th-percentile county than in the 10th-percentile county (23.7 vs 2.9 per 100 000 person-years). Clusters of elevated rates were prominent across north-central China. Nationally, men had 2.9 times higher incidence of esophageal cancer than women. By county, the male-to-female IRRs ranged from 1.1 to 21.1. Clusters of high male-to-female IRRs were observed in northeast China. Rurality (IRR 1.16, 95% CI 1.10-1.22), per capita gross domestic product (IRR 0.95, 0.92-0.98) and percentage of people with a high school diploma (IRR 0.86, 0.84-0.87) in a county were significantly associated with esophageal cancer incidence. The male-to-female IRRs were higher in counties with higher socioeconomic status. Substantial differences in incidence rates and sex ratios of esophageal cancer exist between Chinese counties, and county-level socioeconomic status was associated with these variations. These findings may inform interventions to reduce these disparities.


Subject(s)
Esophageal Neoplasms , Socioeconomic Disparities in Health , Humans , Male , Female , Incidence , Esophageal Neoplasms/epidemiology , Socioeconomic Factors , China/epidemiology
8.
Anal Chem ; 96(23): 9399-9407, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38804597

ABSTRACT

Fast and efficient sample pretreatment is the prerequisite for realizing surface-enhanced Raman spectroscopy (SERS) detection of trace targets in complex matrices, which is still a big issue for the practical application of SERS. Recently, we have proposed a highly performed liquid-liquid extraction (LLE)-back extraction (BE) for weak acids/bases extraction in drinking water and beverage samples. However, the performance efficiency decreased drastically on facing matrices like food and biological blood. Based on the total interaction energies among target, interferent, and extractant molecules, solid-phase extraction (SPE) with a higher selectivity was introduced in advance of LLE-BE, which enabled the sensitive (µg L-1 level) and rapid (within 10 min) SERS detection of both koumine (a weak base) and celastrol (a weak acid) in different food and biological samples. Further, the high SERS sensitivity was determined unmanned by Vis-CAD (a machine learning algorithm), instead of the highly demanded expert recognition. The generality of SPE-LLE-BE for various weak acids/bases (2 < pKa < 12), accompanied by the high efficiency, easy operation, and low cost, offers SERS as a powerful on-site and efficient inspection tool in food safety and forensics.


Subject(s)
Solid Phase Extraction , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Liquid-Liquid Extraction , Humans , Pentacyclic Triterpenes , Food Analysis/methods , Metal Nanoparticles/chemistry
9.
BMC Biotechnol ; 24(1): 25, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689309

ABSTRACT

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.


Subject(s)
Cartilage , Chondrocytes , Polylactic Acid-Polyglycolic Acid Copolymer , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Engineering/methods , Chondrocytes/cytology , Cartilage/cytology , Cartilage/growth & development , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Rabbits , Porosity , Polyglycolic Acid/chemistry , Neovascularization, Physiologic/drug effects
10.
Am J Gastroenterol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38088388

ABSTRACT

INTRODUCTION: Prediction models for esophageal squamous cell carcinoma (ESCC) need to be proven effective in the target population before they can be applied to population-based endoscopic screening to improve cost-effectiveness. We have systematically reviewed ESCC prediction models applicable to the general population and performed external validation and head-to-head comparisons in a large multicenter prospective cohort including 5 high-risk areas of China (Fei Cheng, Lin Zhou, Ci Xian, Yang Zhong, and Yan Ting). METHODS: Models were identified through a systematic review and validated in a large population-based multicenter prospective cohort that included 89,753 participants aged 40-69 years who underwent their first endoscopic examination between April 2017 and March 2021 and were followed up until December 31, 2022. Model performance in external validation was estimated based on discrimination and calibration. Discrimination was assessed by C-statistic (concordance statistic), and calibration was assessed by calibration plot and Hosmer-Lemeshow test. RESULTS: The systematic review identified 15 prediction models that predicted severe dysplasia and above lesion (SDA) or ESCC in the general population, of which 11 models (4 SDA and 7 ESCC) were externally validated. The C-statistics ranged from 0.67 (95% confidence interval 0.66-0.69) to 0.70 (0.68-0.71) of the SDA models, and the highest was achieved by Liu et al (2020) and Liu et al (2022). The C-statistics ranged from 0.51 (0.48-0.54) to 0.74 (0.71-0.77), and Han et al (2023) had the best discrimination of the ESCC models. Most models were well calibrated after recalibration because the calibration plots coincided with the x = y line. DISCUSSION: Several prediction models showed moderate performance in external validation, and the prediction models may be useful in screening for ESCC. Further research is needed on model optimization, generalization, implementation, and health economic evaluation.

11.
Am J Gastroenterol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382852

ABSTRACT

INTRODUCTION: The course of maternal antiviral prophylaxis to prevent mother-to-child transmission of hepatitis B virus (HBV-MTCT) varies greatly, and it has not been demonstrated in a randomized controlled study. METHODS: In this multicenter, open-label, randomized controlled trial, eligible pregnant women with HBV DNA of 5.3-9.0 log10 IU/mL who received tenofovir alafenamide fumarate (TAF) from the first day of 33 gestational weeks to delivery (expected eight-week) or to four-week postpartum (expected twelve-week) were randomly enrolled at a 1:1 ratio and followed until six-month postpartum. All infants received standard immunoprophylaxis (hepatitis B immunoglobulin and vaccine). The primary endpoint was the safety of mothers and infants. The secondary endpoint was infants' HBV-MTCT rate at seven months of age. RESULTS: Among 119 and 120 intention-to-treat pregnant women, 115 and 116 women were followed until delivery, and 110 and 112 per-protocol mother-infant dyads in two groups completed the study. Overall, TAF was well tolerated, no one discontinued therapy due to adverse events (0/239, 0%, 95% confidence interval [CI] 0%-1.6%), and no infant had congenital defects or malformations at delivery (0/231, 0%, 95% CI 0%-1.6%). The infants' physical development at birth (n=231) and at seven months (n=222) were normal. Furthermore, 97.0% (224/231, 95% CI 93.9%-98.5%) of women achieved HBV DNA <5.3 log10 IU/mL at delivery. The intention-to-treat and per-protocol infants' HBV-MTCT rates were 7.1% (17/239, 95% CI 4.5%-11.1%) and 0% (0/222, 95% CI 0%-1.7%) at seven months of age. Comparatively, 15.1% (18/119, 95% CI 9.8%-22.7%) versus 18.3% (22/120, 95% CI 12.4%-26.2%) of women in the two groups had mildly elevated alanine aminotransferase levels at three-month and six-month postpartum, respectively (P=0.507); notably, no one experienced alanine aminotransferase flare (0% [0/119, 95% CI 0%-3.1%] versus 0% [0/120, 0%-3.1%]). DISCUSSION: Maternal TAF prophylaxis to prevent HBV-MTCT is generally safe and effective, and expected eight-week prenatal duration is feasible. ClinicalTrials.gov, NCT04850950.

12.
J Neuroinflammation ; 21(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178196

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a common but severe psychiatric illness characterized by depressive mood and diminished interest. Both nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 1 (NLRP1) inflammasome and autophagy have been reported to implicate in the pathological processes of depression. However, the mechanistic interplay between NLRP1 inflammasome, autophagy, and depression is still poorly known. METHODS: Animal model of depression was established by chronic social defeat stress (CSDS). Depressive-like behaviors were determined by social interaction test (SIT), sucrose preference test (SPT), open field test (OFT), forced swim test (FST), and tail-suspension test (TST). The protein expression levels of NLRP1 inflammasome complexes, pro-inflammatory cytokines, phosphorylated-phosphatidylinositol 3-kinase (p-PI3K)/PI3K, phosphorylated-AKT (p-AKT)/AKT, phosphorylated-mechanistic target of rapamycin (p-mTOR)/mTOR, brain-derived neurotrophic factor (BDNF), phosphorylated-tyrosine kinase receptor B (p-TrkB)/TrkB, Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl2) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were examined by western blotting. The mRNA expression levels of pro-inflammatory cytokines were tested by quantitative real-time PCR. The interaction between proteins was detected by immunofluorescence and coimmunoprecipitation. Neuronal injury was assessed by Nissl staining. The autophagosomes were visualized by transmission electron microscopy. Nlrp1a knockdown was performed using an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. RESULTS: CSDS exposure caused a bidirectional change in hippocampal autophagy function, which was activated in the initial period but impaired at the later stage. In addition, CSDS exposure increased the expression levels of hippocampal NLRP1 inflammasome complexes, pro-inflammatory cytokines, p-PI3K, p-AKT and p-mTOR in a time-dependent manner. Interestingly, NLRP1 is immunoprecipitated with mTOR but not PI3K/AKT and CSDS exposure facilitated the immunoprecipitation between them. Hippocampal Nlrp1a knockdown inhibited the activity of PI3K/AKT/mTOR signaling, rescued the impaired autophagy and ameliorated depressive-like behavior induced by CSDS. In addition, rapamycin, an autophagy inducer, abolished NLRP1 inflammasome-driven inflammatory reactions, alleviated depressive-like behavior and exerted a neuroprotective effect. CONCLUSIONS: Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behavior in mice and the regulation of autophagy could be a valuable therapeutic strategy for the management of depression.


Subject(s)
Depression , Depressive Disorder, Major , Animals , Mice , Antidepressive Agents/pharmacology , Autophagy , Cytokines/metabolism , Depression/metabolism , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Inflammasomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
13.
Clin Genet ; 105(3): 283-293, 2024 03.
Article in English | MEDLINE | ID: mdl-38009810

ABSTRACT

The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.


Subject(s)
Contracture , Hirschsprung Disease , Animals , Humans , Hirschsprung Disease/genetics , Phenotype , Receptor, ErbB-3/genetics , Syndrome , Zebrafish/genetics
14.
BMC Infect Dis ; 24(1): 830, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148030

ABSTRACT

BACKGROUND AND AIMS: Data on the safety and effectiveness of tenofovir alafenamide (TAF) plus peginterferon-alpha (Peg-IFN-α) in children with chronic hepatitis B (CHB) are lacking. The current study aimed to present the characteristics of four pediatric CHB patients who obtained a functional cure by using TAF and Peg-IFN-α. METHODS: In this case series study initiated in May 2019, ten children who had no clinical symptoms or signs received response-guided (HBV DNA undetectable, hepatitis B e antigen [HBeAg] loss or seroconversion, and hepatitis B surface antigen [HBsAg] loss or seroconversion) and functional cure-targeted (HBsAg loss or seroconversion) TAF (25 mg/d, orally) plus Peg-IFN-α-2b (180 µg/1.73m2, subcutaneously, once weekly) in combination (9/10) or sequential (1/10) therapy. The safety and effectiveness of these treatments were monitored. RESULTS: As of April 2024, four out of ten children obtained a functional cure after a mean of 31.5 months of treatment, and the other six children are still undergoing treatment. These four cured children, aged 2, 4, 8, and 6 years, were all HBeAg-positive and had alanine aminotransferase levels of 80, 47, 114, and 40 U/L; HBV DNA levels of 71200000, 93000000, 8220, and 96700000 IU/mL; and HBsAg levels of 39442.8, 15431.2, 22, and 33013.1 IU/mL, respectively. During treatment, all the children (10/10) experienced mild or moderate adverse events, including flu-like symptoms, anorexia, fatigue, and cytopenia. Notably, growth retardation (8/10) was the most significant adverse event; and it occurred in three cured children (3/4) treated with combination therapy and was present to a low degree in the other cured child (1/4) treated with sequential therapy. Fortunately, all three cured children recovered to or exceeded the normal growth levels at 9 months posttreatment. CONCLUSIONS: TAF plus Peg-IFN-α-2b therapy is potentially safe and effective for pediatric CHB patients, which may provide important insights for future clinical practice and study designs targeting functional cures for children with CHB.


Subject(s)
Antiviral Agents , Drug Therapy, Combination , Hepatitis B, Chronic , Interferon-alpha , Polyethylene Glycols , Recombinant Proteins , Tenofovir , Humans , Tenofovir/therapeutic use , Tenofovir/administration & dosage , Tenofovir/analogs & derivatives , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Male , Female , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/administration & dosage , Child , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/adverse effects , Polyethylene Glycols/administration & dosage , Interferon-alpha/therapeutic use , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Child, Preschool , Treatment Outcome , Interferon alpha-2/therapeutic use , Interferon alpha-2/administration & dosage , Hepatitis B Surface Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , DNA, Viral/blood , Alanine/therapeutic use , Alanine/analogs & derivatives
15.
Bioorg Chem ; 147: 107400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688196

ABSTRACT

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Structure
16.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992119

ABSTRACT

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

17.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443798

ABSTRACT

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Subject(s)
Drug Discovery , Epigenesis, Genetic , Homeostasis , RNA , RNA, Messenger
18.
Respiration ; 103(7): 406-416, 2024.
Article in English | MEDLINE | ID: mdl-38422997

ABSTRACT

INTRODUCTION: Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. METHODS: A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: n = 220; test cohort: n = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). RESULTS: Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. CONCLUSION: This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.


Subject(s)
Pleural Effusion, Malignant , Tomography, X-Ray Computed , Humans , Female , Male , Middle Aged , Retrospective Studies , Pleural Effusion, Malignant/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Diagnosis, Differential , Pleural Effusion/diagnostic imaging , Support Vector Machine , ROC Curve , Logistic Models , Adult , Radiomics
19.
Geriatr Nurs ; 55: 21-28, 2024.
Article in English | MEDLINE | ID: mdl-37967478

ABSTRACT

BACKGROUND: Patients with total knee arthroplasty encounter stressful events that consume their coping resources, resulting in self-control fatigue. Few studies have focused on this phenomenon. AIM: To identify subgroups of patients before total knee arthroplasty according to the heterogeneous patterns of self-regulation fatigue and to analyse the predictors of subtypes. METHODS: A total of 210 patients awaiting total knee arthroplasty were enrolled. Data of demographic characteristics, clinical characteristics, psychological and social factors were collected. Latent profile analysis was employed to define the subgroups. Predictors of patterns were identified using multinomial logistic regression. RESULTS: Three latent classes were identified: the low, medium, and high self-regulation fatigue classes. For the high self-regulation fatigue class, lower levels of hope, social support, self-efficacy and education were major predictors. CONCLUSION: These predictors of patients with different levels of self-regulation fatigue provide evidence for the identification of vulnerable populations and lay a foundation for targeted interventions.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Cross-Sectional Studies , Self Efficacy , Logistic Models , Fatigue
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 497-507, 2024 Apr 28.
Article in English, Zh | MEDLINE | ID: mdl-39019778

ABSTRACT

OBJECTIVES: The rehabilitation work for patients with motor dysfunction after stroke is crucial. However, there is currently a lack of summarized evidence regarding the rehabilitation management of stroke patients in rehabilitation wards, communities, and at home. This study aims to compile relevant evidence on the rehabilitation management of patients with motor dysfunction after stroke, providing a reference for clinical and community health professionals to carry out rehabilitation interventions. METHODS: A systematic search was conducted in BMJ Best Practice, UpToDate, National Guidebook Clearinghouse, American Heart Association/American Stroke Association, Canadian Medical Association, National Institute for Health and Clinical Excellence, United States Department of Veterans Affairs/ Department of Defense, Registered Nurses Association of Ontario, JBI Evidence-Based Healthcare Center Database, The Cochrane Library, PubMed, Web of Science, Embase, CINAHL, CNKI, Wanfang Database, SinoMed, and other databases for all literature on the rehabilitation management of patients with motor dysfunction after stroke. This included clinical decision-making, guidelines, expert consensuses, recommended practices, systematic reviews, and evidence summaries, with the search period spanning from the establishment of each database to October 2023. Two researchers independently evaluated the quality of the literature. RESULTS: A total of twenty-one documents were included, consisting of 11 guidelines, 2 expert consensus, and 8 systematic reviews. Evidence was extracted and integrated from the included literature, summarizing forty-five pieces of evidence across nine areas: rehabilitation management model, rehabilitation institutions, rehabilitation teams, timing of rehabilitation interventions, rehabilitation assessment, rehabilitation programs, rehabilitation duration and frequency, rehabilitation intensity, and rehabilitation support These covered comprehensive rehabilitation management content for stroke patients in the early, subacute, and chronic phases. CONCLUSIONS: The best evidence summarized in this study for the rehabilitation management of patients with motor dysfunction after stroke is comprehensive and of high quality. It provides important guidance for clinical and community healthcare professionals in carrying out rehabilitation interventions. When applying the evidence, it is recommended to consider the current condition of the stroke patient, the extent of motor dysfunction, environmental factors, and the patient's preferences. Then, select the most appropriate rehabilitation plan, and adjust the type and intensity of training according to each patient's specific needs and preferences.


Subject(s)
Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke/complications , China
SELECTION OF CITATIONS
SEARCH DETAIL