ABSTRACT
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Adenocarcinoma/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Image Processing, Computer-Assisted , Oncogenes , Tumor MicroenvironmentABSTRACT
Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Diphosphates/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Inositol Phosphates/genetics , Inositol Phosphates/metabolism , Glycolysis/genetics , Respiration , Pyrophosphatases/metabolism , Glucose/metabolismABSTRACT
Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.
Subject(s)
Brassica napus , Plasmodiophorida , Cryoelectron Microscopy , Lead , Brassica napus/genetics , Plasmodiophorida/physiology , Ion Channels , Plant DiseasesABSTRACT
Zinc is an essential element in living organisms, yet little is known about how cells ensure that zinc is allocated to the correct metalloproteins. Papers in Cell and Cell Reports demonstrate that the ZNG1 family of GTPases have metallochaperone functions: they directly transfer zinc to, and thereby activate, methionine aminopeptidases that are crucial for protein modification during or after translation.
Subject(s)
Metalloproteins , Zinc , Metalloproteins/metabolism , Molecular Chaperones/metabolism , Zinc/metabolismABSTRACT
Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.
Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoadjuvant Therapy , Neoplasms/therapy , Tumor MicroenvironmentABSTRACT
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Disease Resistance/immunology , Plant Immunity , Signal Transduction , Animals , Cell Death , Cell Membrane/metabolism , Cell Membrane Permeability , Glutamic Acid/metabolism , Lipid Bilayers/metabolism , Oocytes/metabolism , Plant Cells/metabolism , Protein Multimerization , Protoplasts/metabolism , Reactive Oxygen Species/metabolism , Single Molecule Imaging , Vacuoles/metabolism , XenopusABSTRACT
Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.
Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus ReplicationABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.
Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Immunologic Memory , SARS-CoV-2/physiology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , COVID-19/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/chemistry , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunologyABSTRACT
T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFß1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFß1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFß1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.
Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Signal Transduction , Transforming Growth Factor beta1/metabolism , Bone Morphogenetic Proteins/metabolismABSTRACT
Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.
Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-LymphocytesABSTRACT
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Subject(s)
Disease Progression , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proteogenomics , Smoking/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogens/toxicity , Cohort Studies , Cytosine Deaminase/metabolism , Asia, Eastern , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Humans , Matrix Metalloproteinases/metabolism , Mutation/genetics , Principal Component AnalysisABSTRACT
Mammalian chromosomes are partitioned into A/B compartments and topologically associated domains (TADs). The inactive X (Xi) chromosome, however, adopts a distinct conformation without evident compartments or TADs. Here, through exploration of an architectural protein, structural-maintenance-of-chromosomes hinge domain containing 1 (SMCHD1), we probe how the Xi is reconfigured during X chromosome inactivation. A/B compartments are first fused into "S1" and "S2" compartments, coinciding with Xist spreading into gene-rich domains. SMCHD1 then binds S1/S2 compartments and merges them to create a compartment-less architecture. Contrary to current views, TADs remain on the Xi but in an attenuated state. Ablating SMCHD1 results in a persistent S1/S2 organization and strengthening of TADs. Furthermore, loss of SMCHD1 causes regional defects in Xist spreading and erosion of heterochromatic silencing. We present a stepwise model for Xi folding, where SMCHD1 attenuates a hidden layer of Xi architecture to facilitate Xist spreading.
Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Mammalian/chemistry , X Chromosome Inactivation , Alleles , Animals , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Mammalian/metabolism , DNA Methylation , Female , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Principal Component Analysis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolismABSTRACT
N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.
Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA MethylationABSTRACT
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of â¼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was â¼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Introns/genetics , Prostatic Neoplasms/metabolism , RNA Splicing/genetics , Spliceosomes/metabolism , Signal Transduction , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Prostatic Neoplasms, Castration-Resistant/geneticsABSTRACT
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.
Subject(s)
Gene Expression Profiling/methods , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Cohort Studies , Humans , Male , Mutation , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapyABSTRACT
The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.
ABSTRACT
Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.
Subject(s)
Androgens , Cells , Sex Characteristics , Single-Cell Analysis , Transcriptome , Animals , Female , Humans , Male , Mice , Androgens/metabolism , Androgens/pharmacology , Antigen Presentation/drug effects , Antigen Presentation/genetics , Immunity, Innate , Lymphocytes/metabolism , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/drug effects , Mice, Inbred C57BL , Transcriptome/drug effects , Transcriptome/genetics , UK Biobank , Cells/drug effects , Cells/immunology , Cells/metabolismABSTRACT
The fermionic Hubbard model (FHM)1 describes a wide range of physical phenomena resulting from strong electron-electron correlations, including conjectured mechanisms for unconventional superconductivity. Resolving its low-temperature physics is, however, challenging theoretically or numerically. Ultracold fermions in optical lattices2,3 provide a clean and well-controlled platform offering a path to simulate the FHM. Doping the antiferromagnetic ground state of a FHM simulator at half-filling is expected to yield various exotic phases, including stripe order4, pseudogap5, and d-wave superfluid6, offering valuable insights into high-temperature superconductivity7-9. Although the observation of antiferromagnetic correlations over short10 and extended distances11 has been obtained, the antiferromagnetic phase has yet to be realized as it requires sufficiently low temperatures in a large and uniform quantum simulator. Here we report the observation of the antiferromagnetic phase transition in a three-dimensional fermionic Hubbard system comprising lithium-6 atoms in a uniform optical lattice with approximately 800,000 sites. When the interaction strength, temperature and doping concentration are finely tuned to approach their respective critical values, a sharp increase in the spin structure factor is observed. These observations can be well described by a power-law divergence, with a critical exponent of 1.396 from the Heisenberg universality class12. At half-filling and with optimal interaction strength, the measured spin structure factor reaches 123(8), signifying the establishment of an antiferromagnetic phase. Our results provide opportunities for exploring the low-temperature phase diagram of the FHM.
ABSTRACT
α-FA1-xCsxPbI3 is a promising absorber material for efficient and stable perovskite solar cells (PSCs)1,2. However, the most efficient α-FA1-xCsxPbI3 PSCs require the inclusion of methylammonium chloride (MACl) additive3,4, which generates volatile organic residues (i.e., MA) that limit device stability at elevated temperatures5. To date, the highest certified power-conversion efficiency (PCE) of α-FA1-xCsxPbI3 PSCs without MACl was only ~24% (ref.6,7), and has yet to exhibit any stability advantages. Here, we identify interfacial contact loss caused by the Cs+ accumulation for the conventional α-FA1-xCsxPbI3 PSCs, which deteriorates the device performance and stability. Through in-situ GIWAXS analysis and DFT calculations, we demonstrate an intermediate phase-assisted crystallization pathway enabled by acetate surface coordination to fabricate high-quality α-FA1-xCsxPbI3 film, without using MA-additive. We herein report a certified stabilized power output (SPO) efficiency of 25.94% and a reverse-scanning PCE of 26.64% for α-FA1-xCsxPbI3 PSCs, exhibiting negligible contact losses and enhanced operational stability. The devices retain >95% of their initial PCEs after over 2,000 hours operating at maximum power point under 1 sun, 85 °C, and 60% relative humidity (ISOS-L-3).
ABSTRACT
In bacteria, most secretory proteins are translocated across the plasma membrane by the interplay of the SecA ATPase and the SecY channel. How SecA moves a broad range of polypeptide substrates is only poorly understood. Here we show that SecA moves polypeptides through the SecY channel by a "push and slide" mechanism. In its ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them into the channel. A polypeptide can also passively slide back and forth when SecA is in the predominant ADP-bound state or when SecA encounters a poorly interacting amino acid in its ATP-bound state. SecA performs multiple rounds of ATP hydrolysis before dissociating from SecY. The proposed push and slide mechanism is supported by a mathematical model and explains how SecA allows translocation of a wide range of polypeptides. This mechanism may also apply to hexameric polypeptide-translocating ATPases.