Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Acta Neuropathol ; 146(2): 191-210, 2023 08.
Article in English | MEDLINE | ID: mdl-37341831

ABSTRACT

Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW), due to their properties on size-exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl-insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl-insoluble fibrillar tau comprises abundant paired-helical filaments (PHF) as quantified by electron microscopy (EM) and is more resistant to proteinase K, compared to HMW tau, which is mostly in an oligomeric form. Sarkosyl-insoluble and HMW tau are nearly equivalent in potency in HEK cell bioactivity assay for seeding aggregates, and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl-insoluble tau with regard to tau seeding potential, but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant to tau-related Alzheimer phenotypes.


Subject(s)
Alzheimer Disease , Mice , Animals , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Mice, Transgenic , Neurons/metabolism , Brain/metabolism
2.
Brain ; 145(10): 3582-3593, 2022 10 21.
Article in English | MEDLINE | ID: mdl-34957486

ABSTRACT

Apolipoprotein E (ApoE) is a multifaceted secreted molecule synthesized in the CNS by astrocytes and microglia, and in the periphery largely by the liver. ApoE has been shown to impact the integrity of the blood-brain barrier, and, in humans, the APOE4 allele of the gene is reported to lead to a leaky blood-brain barrier. We used allele specific knock-in mice expressing each of the common (human) ApoE alleles, and longitudinal multiphoton intravital microscopy, to directly monitor the impact of various ApoE isoforms on blood-brain barrier integrity. We found that humanized APOE4, but not APOE2 or APOE3, mice show a leaky blood-brain barrier, increased MMP9, impaired tight junctions, and reduced astrocyte end-foot coverage of blood vessels. Removal of astrocyte-produced ApoE4 led to the amelioration of all phenotypes while the removal of astrocyte-produced ApoE3 had no effect on blood-brain barrier integrity. This work shows a cell specific gain of function effect of ApoE4 in the dysfunction of the BBB and implicates astrocyte production of ApoE4, possibly as a function of astrocytic end foot interactions with vessels, as a key regulator of the integrity of the blood-brain barrier.


Subject(s)
Apolipoprotein E4 , Astrocytes , Humans , Animals , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 9 , Protein Isoforms/metabolism
3.
J Neurosci ; 41(19): 4335-4348, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33893219

ABSTRACT

Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau "seed" uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons.SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Neurotoxicity Syndromes/pathology , Tauopathies/pathology , tau Proteins/toxicity , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Humans , Male , Mice , Middle Aged , Presenilin-1/biosynthesis , Presenilin-1/genetics , tau Proteins/genetics , tau Proteins/metabolism
4.
EMBO J ; 37(7)2018 04 03.
Article in English | MEDLINE | ID: mdl-29472250

ABSTRACT

The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid-liquid phase separation (LLPS) under cellular conditions and that phase-separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho-tau isolated from human Alzheimer brain. Droplet-like tau can also be observed in neurons and other cells. We found that tau droplets become gel-like in minutes, and over days start to spontaneously form thioflavin-S-positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Neurons/metabolism , Protein Aggregation, Pathological/metabolism , tau Proteins/chemistry , tau Proteins/isolation & purification , tau Proteins/metabolism , Aged, 80 and over , Amino Acid Sequence , Animals , Benzothiazoles/metabolism , Biophysical Phenomena , Cloning, Molecular , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Female , HEK293 Cells , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Liquid-Liquid Extraction , Mice , Mice, Transgenic , Molecular Weight , Neuroblastoma/metabolism , Neurodegenerative Diseases/metabolism , Neurofibrillary Tangles/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Sf9 Cells
5.
J Biol Chem ; 293(34): 13247-13256, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29950521

ABSTRACT

Apolipoprotein E (ApoE) is a secreted apolipoprotein with three isoforms, E2, E3, and E4, that binds to lipids and facilitates their transport in the extracellular environment of the brain and the periphery. The E4 allele is a major genetic risk factor for the sporadic form of Alzheimer's disease (AD), and studies of human brain and mouse models have revealed that E4 significantly exacerbates the deposition of amyloid beta (Aß). It has been suggested that this deposition could be attributed to the formation of soluble ApoE isoform-specific ApoE-Aß complexes. However, previous studies have reported conflicting results regarding the directionality and strength of those interactions. In this study, using a series of flow cytometry assays that maintain the physiological integrity of ApoE-Aß complexes, we systematically assessed the association of Aß with ApoE2, E3, or E4. We used ApoE secreted from HEK cells or astrocytes overexpressing ApoE fused with a GFP tag. As a source of soluble Aß peptide, we used synthetic Aß40 or Aß42 or physiological Aß secreted from CHO cell lines overexpressing WT or V717F variant amyloid precursor protein (APP). We observed significant interactions between the different ApoE isoforms and Aß, with E4 interacting with Aß more strongly than the E2 and E3 isoforms. We also found subtle differences depending on the Aß type and the ApoE-producing cell type. In conclusion, these results indicate that the strength of the ApoE-Aß association depends on the source of Aß or ApoE.


Subject(s)
Amyloid beta-Peptides/metabolism , Apolipoprotein E2/metabolism , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Flow Cytometry/methods , Neurons/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/cytology , Biological Assay , Cell Lineage , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Mice, Transgenic , Neurons/cytology , Protein Isoforms
6.
Brain ; 141(7): 2194-2212, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29733334

ABSTRACT

Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-ß deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-ß deposition. To determine whether reducing total human tau expression in a transgenic model where there is concurrent amyloid-ß plaque formation can still reduce tau pathology and protect against neuronal loss, we have taken advantage of the regulatable tau transgene in APP/PS1 × rTg4510 mice. These mice develop both neurofibrillary tangles as well as amyloid-ß plaques throughout the cortex and hippocampus. By suppressing human tau expression for 6 months in the APP/PS1 × rTg4510 mice using doxycycline, AT8 tau pathology, bioactivity, and astrogliosis were reduced, though importantly to a lesser extent than lowering tau in the rTg4510 alone mice. Based on non-denaturing gels and proteinase K digestions, the remaining tau aggregates in the presence of amyloid-ß exhibit a longer-lived aggregate conformation. Nonetheless, lowering the expression of the human tau transgene was sufficient to equally ameliorate thioflavin-S positive tangles and prevent neuronal loss equally well in both the APP/PS1 × rTg4510 mice and the rTg4510 cohort. Together, these results suggest that, although amyloid-ß stabilizes tau aggregates, lowering total tau levels is still an effective strategy for the treatment of tau pathology and neuronal loss even in the presence of amyloid-ß deposition.


Subject(s)
Plaque, Amyloid/pathology , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/pathology , Neurons/metabolism , Phosphorylation , Plaque, Amyloid/metabolism , Presenilin-1/metabolism
7.
Am J Pathol ; 187(6): 1399-1412, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28408124

ABSTRACT

The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species.


Subject(s)
Alzheimer Disease/metabolism , Neurons/metabolism , tau Proteins/metabolism , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Brain/metabolism , Brain/pathology , Cells, Cultured , Epitopes/immunology , Female , Humans , Interneurons/metabolism , Male , Mice, Transgenic , Microfluidic Analytical Techniques , Molecular Targeted Therapy/methods , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Phosphorylation , tau Proteins/antagonists & inhibitors , tau Proteins/immunology
8.
Ann Neurol ; 80(3): 355-67, 2016 09.
Article in English | MEDLINE | ID: mdl-27351289

ABSTRACT

OBJECTIVE: Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or, in fact, a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in the postmortem AD brain and can be taken up by neurons and seed aggregates. METHODS: We have examined seeding and uptake properties of brain extracellular tau from various sources, including interstitial fluid (ISF) and CSF from an AD transgenic mouse model and postmortem ventricular and antemortem lumbar CSF from AD patients. RESULTS: We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients, and its levels were significantly elevated compared to control subjects. HMW tau derived from CSF of AD patients was seed competent in vitro. INTERPRETATION: These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species, giving new insights into the role of CSF tau and biomarker development for AD. Ann Neurol 2016;80:355-367.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Brain/metabolism , tau Proteins/cerebrospinal fluid , Aged , Animals , Biomarkers/cerebrospinal fluid , Extracellular Fluid/metabolism , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged
9.
Mol Neurodegener ; 18(1): 53, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553663

ABSTRACT

BACKGROUND: The prion-like propagation of tau in neurodegenerative disorders implies that misfolded pathological tau can recruit the normal protein and template its aggregation. Here, we report the methods for the development of sensitive biosensor cell lines for the detection of tau seeding activity. RESULTS: We performed the rational design of novel tau probes based on the current structural knowledge of pathological tau aggregates in Alzheimer's disease. We generated Förster resonance energy transfer (FRET)-based biosensor stable cell lines and characterized their sensitivity, specificity, and overall ability to detect bioactive tau in human samples. As compared to the reference biosensor line, the optimized probe design resulted in an increased efficiency in the detection of tau seeding. The increased sensitivity allowed for the detection of lower amount of tau seeding competency in human brain samples, while preserving specificity for tau seeds found in Alzheimer's disease. CONCLUSIONS: This next generation of FRET-based biosensor cells is a novel tool to study tau seeding activity in Alzheimer's disease human samples, especially in samples with low levels of seeding activity, which may help studying early tau-related pathological events.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Tauopathies , Humans , Alzheimer Disease/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Brain/metabolism
10.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37034629

ABSTRACT

Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW) due to its properties on size exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl insoluble fibrillar tau is comprised of abundant paired helical filaments (PHF) as quantified by electron microscopy (EM), and is more resistant to proteinase K, compared to HMW tau which is mostly in an oligomeric form. Sarkosyl insoluble and HMW tau are nearly equivalent in potency in a HEK cell bioactivity assay for seeding aggregates and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod-microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl insoluble tau with regard to tau seeding potential but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant tau-related Alzheimer phenotypes.

11.
Brain Commun ; 4(2): fcac048, 2022.
Article in English | MEDLINE | ID: mdl-35350555

ABSTRACT

Progressive cognitive decline in Alzheimer's disease correlates closely with the spread of tau protein aggregation across neural networks of the cortical mantle. We tested the hypothesis that heritable factors may influence the rate of propagation of tau pathology across brain regions in a model system, taking advantage of well-defined genetically diverse background strains in mice. We virally expressed human tau locally in the hippocampus and the entorhinal cortex neurons and monitored the cell-to-cell tau protein spread by immunolabelling. Interestingly, some strains showed more tau spreading than others while tau misfolding accumulated at the same rate in all tested mouse strains. Genetic factors may contribute to tau pathology progression across brain networks, which could help refine mechanisms underlying tau cell-to-cell transfer and accumulation, and potentially provide targets for understanding patient-to-patient variability in the rate of disease progression in Alzheimer's disease.

12.
Brain Pathol ; 32(2): e13035, 2022 03.
Article in English | MEDLINE | ID: mdl-34779076

ABSTRACT

Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau-S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau-S396, and pTau-S404 in ALS post-mortem mCTX, total tau and pTau-S396 were increased in C9ORF72-ALS. Additionally, there was a significant decrease in pTau-T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS-specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar-onset ALS together with a decrease in CSF pTau-T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS-R), decreases in CSF pTau-T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau-T181 in ALS, as decreases in CSF pTau-T181:tau ratio may reflect the significant decrease in pTau-T181 in post-mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/cerebrospinal fluid , Disease Progression , Humans , Motor Cortex/metabolism , Phosphorylation , tau Proteins/metabolism
13.
Brain Commun ; 3(2): fcab096, 2021.
Article in English | MEDLINE | ID: mdl-34222869

ABSTRACT

The accumulation of tau aggregates throughout the human brain is the hallmark of a number of neurodegenerative conditions classified as tauopathies. Increasing evidence shows that tau aggregation occurs in a 'prion-like' manner, in which a small amount of misfolded tau protein can induce other, naïve tau proteins to aggregate. Tau aggregates have been found to differ structurally among different tauopathies. Recently, however, we have suggested that tau oligomeric species may differ biochemically among individual patients with sporadic Alzheimer disease, and have also showed that the bioactivity of the tau species, measured using a cell-based bioassay, also varied among individuals. Here, we adopted a live-cell imaging approach to the standard cell-based bioassay to explore further whether the kinetics of aggregation also differentiated these patients. We found that aggregation can be observed to follow a consistent pattern in all cases, with a lag phase, a growth phase and a plateau phase, which each provide quantitative parameters by which we characterize the aggregation kinetics. The length of the lag phase and magnitude of the plateau phase are both dependent upon the concentration of seeding-competent tau, the relative enrichment of which differs among patients. The slope of the growth phase correlates with morphological differences in the tau aggregates, which may be reflective of underlying structural differences. This kinetic assay confirms and refines the concept of heterogeneity in the characteristics of tau proteopathic seeds among individuals with Alzheimer's disease and is a method by which future studies may characterize longitudinal changes in tau aggregation and the cellular processes which may influence these changes.

14.
RSC Adv ; 11(15): 8899-8915, 2021.
Article in English | MEDLINE | ID: mdl-34381596

ABSTRACT

Tauopathies are a group of disorders in which the deposition of abnormally folded tau protein accompanies neurodegeneration. The development of methods for detection and classification of pathological changes in protein conformation are desirable for understanding the factors that influence the structural polymorphism of aggregates in tauopathies. We have previously demonstrated the utility of Raman spectroscopy for the characterization and discrimination of different protein aggregates, including tau, based on their unique conformational signatures. Building on this, in the present study, we assess the utility of Raman spectroscopy for characterizing and distinguishing different conformers of the same protein which in the case of tau are unique tau strains generated in vitro. We now investigate the impact of aggregation environment, cofactors, post-translational modification and primary sequence on the Raman fingerprint of tau fibrils. Using quantitative conformational fingerprinting and multivariate statistical analysis, we found that the aggregation of tau in different buffer conditions resulted in the formation of distinct fibril strains. Unique spectral markers were identified for tau fibrils generated using heparin or RNA cofactors, as well as for phosphorylated tau. We also determined that the primary sequence of the tau monomer influenced the conformational signature of the resulting tau fibril, including 2N4R, 0N3R, K18 and P301S tau variants. These results highlight the conformational polymorphism of tau fibrils, which is reflected in the wide range of associated neurological disorders. Furthermore, the analyses presented in this study provide a benchmark for the Raman spectroscopic characterization of tau strains, which may shed light on how the aggregation environment, cofactors and post-translational modifications influence tau conformation in vivo in future studies.

15.
iScience ; 24(2): 102058, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33554064

ABSTRACT

It has been suggested that aberrant activation of glycogen synthase kinase-3-beta (GSK-3ß) can trigger abnormal tau hyperphosphorylation and aggregation, which ultimately leads to neuronal/synaptic damage and impaired cognition in Alzheimer disease (AD). We examined if isoform-selective partial reduction of GSK-3ß can decrease pathological tau changes, including hyperphosphorylation, aggregation, and spreading, in mice with localized human wild-type tau (hTau) expression in the brain. We used adeno-associated viruses (AAVs) to express hTau locally in the entorhinal cortex of wild-type and GSK-3ß hemi-knockout (GSK-3ß-HK) mice. GSK-3ß-HK mice had significantly less accumulation of hyperphosphorylated tau in synapses and showed a significant decrease of tau protein spread between neurons. In primary neuronal cultures from GSK-3ß-HK mice, the aggregation of exogenous FTD-mutant tau was also significantly reduced. These results show that a partial decrease of GSK-3ß significantly represses tau-initiated neurodegenerative changes in the brain, and therefore is a promising therapeutic target for AD and other tauopathies.

16.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33741591

ABSTRACT

Neuronal tau reduction confers resilience against ß-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Subject(s)
Alzheimer Disease , Transcription Factors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Mice , Plaque, Amyloid/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , tau Proteins/genetics , tau Proteins/metabolism
17.
Acta Neuropathol Commun ; 8(1): 168, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33076986

ABSTRACT

Recent studies suggest that misfolded tau molecules can be released, and taken up by adjacent neurons, propagating proteopathic seeds across neural systems. Yet critical to understanding whether tau propagation is relevant in pathophysiology of disease would be to learn if it alters neuronal properties. We utilized high resolution multi-color in situ hybridization technology, RNAScope, in a well-established tau transgenic animal, and found that a subset of neurons in the cortex do not appear to express the transgene, but do develop phospho-tau positive inclusions, consistent with having received tau seeds. Recipient neurons show decreases in their expression of synaptophysin, CAMKIIα, and mouse tau in both young and old animals. These results contrast with neurons that develop tau aggregates and also overexpress the transgene, which have few changes in expression of metabolic and synaptic markers. Taken together, these results strongly suggest that tau propagation impacts neuronal functional integrity.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gene Expression , Neurons/metabolism , Synaptophysin/genetics , tau Proteins/genetics , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Humans , In Situ Hybridization , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Mice , Mice, Transgenic , RNA, Messenger/metabolism , Tauopathies/genetics , tau Proteins/metabolism
18.
J Neuropathol Exp Neurol ; 79(6): 592-604, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32388561

ABSTRACT

Familial Alzheimer disease-causing mutations in Presenilin 1 (PSEN1) are generally thought to shift the processing of APP toward longer, more amyloidogenic Aß fragments. However, certain PSEN1 mutations cause severe reduction in gamma secretase function when expressed in the homozygous state, thus challenging the amyloid hypothesis. We sought to evaluate the effects of one such mutation, PSEN1 L435F, in more physiologic conditions and genetic contexts by using human induced pluripotent stem cell (iPSC)-derived neurons from an individual with familial AD (fAD) linked to the PSEN1 L435F mutation, and compared the biochemical phenotype of the iPS-derived neurons with brain tissue obtained at autopsy from the same patient. Our results demonstrate that in the endogenous heterozygous state, the PSEN1 L435F mutation causes a large increase in soluble Aß43 but does not change the overall levels of soluble Aß40 or Aß42 when compared with control iPSC-neurons. Increased pathologically phosphorylated tau species were also observed in PSEN1-mutant iPSC-neurons. Concordant changes in Aß species were present in autopsy brain tissue from the same patient. Finally, the feasibility of using Aß43 immunohistochemistry of brain tissue to identify fAD cases was evaluated in a limited autopsy case series with the finding that strong Aß43 staining occurred only in fAD cases.


Subject(s)
Amyloid beta-Peptides/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Presenilin-1/genetics , Aged, 80 and over , Brain/metabolism , Cell Line , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Middle Aged , Mutation , Presenilin-1/metabolism
19.
Nat Med ; 26(8): 1256-1263, 2020 08.
Article in English | MEDLINE | ID: mdl-32572268

ABSTRACT

Alzheimer's disease (AD) causes unrelenting, progressive cognitive impairments, but its course is heterogeneous, with a broad range of rates of cognitive decline1. The spread of tau aggregates (neurofibrillary tangles) across the cerebral cortex parallels symptom severity2,3. We hypothesized that the kinetics of tau spread may vary if the properties of the propagating tau proteins vary across individuals. We carried out biochemical, biophysical, MS and both cell- and animal-based-bioactivity assays to characterize tau in 32 patients with AD. We found striking patient-to-patient heterogeneity in the hyperphosphorylated species of soluble, oligomeric, seed-competent tau. Tau seeding activity correlates with the aggressiveness of the clinical disease, and some post-translational modification (PTM) sites appear to be associated with both enhanced seeding activity and worse clinical outcomes, whereas others are not. These data suggest that different individuals with 'typical' AD may have distinct biochemical features of tau. These data are consistent with the possibility that individuals with AD, much like people with cancer, may have multiple molecular drivers of an otherwise common phenotype, and emphasize the potential for personalized therapeutic approaches for slowing clinical progression of AD.


Subject(s)
Alzheimer Disease/genetics , Cognitive Dysfunction/genetics , Protein Aggregation, Pathological/genetics , tau Proteins/genetics , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cognitive Dysfunction/pathology , Female , Genetic Heterogeneity , Humans , Male , Middle Aged , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Phosphorylation , Protein Aggregation, Pathological/pathology , Severity of Illness Index
20.
Nat Neurosci ; 22(1): 57-64, 2019 01.
Article in English | MEDLINE | ID: mdl-30559471

ABSTRACT

The coexistence of amyloid-ß (Aß) plaques and tau neurofibrillary tangles in the neocortex is linked to neural system failure and cognitive decline in Alzheimer's disease. However, the underlying neuronal mechanisms are unknown. By employing in vivo two-photon Ca2+ imaging of layer 2/3 cortical neurons in mice expressing human Aß and tau, we reveal a dramatic tau-dependent suppression of activity and silencing of many neurons, which dominates over Aß-dependent neuronal hyperactivity. We show that neurofibrillary tangles are neither sufficient nor required for the silencing, which instead is dependent on soluble tau. Surprisingly, although rapidly effective in tau mice, suppression of tau gene expression was much less effective in rescuing neuronal impairments in mice containing both Aß and tau. Together, our results reveal how Aß and tau synergize to impair the functional integrity of neural circuits in vivo and suggest a possible cellular explanation contributing to disappointing results from anti-Aß therapeutic trials.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Nerve Net/metabolism , Neurons/metabolism , Plaque, Amyloid/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Mice , Nerve Net/pathology , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Plaque, Amyloid/genetics , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL