Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32442405

ABSTRACT

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Thinness/genetics , Adipose Tissue/metabolism , Adult , Animals , Cell Line , Cohort Studies , Drosophila/genetics , Estonia , Female , Humans , Leptin/genetics , Lipolysis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , RNA Interference/physiology , Young Adult
2.
Nature ; 589(7842): 442-447, 2021 01.
Article in English | MEDLINE | ID: mdl-33361811

ABSTRACT

Successful pregnancies rely on adaptations within the mother1, including marked changes within the immune system2. It has long been known that the thymus, the central lymphoid organ, changes markedly during pregnancy3. However, the molecular basis and importance of this process remain largely obscure. Here we show that the osteoclast differentiation receptor RANK4,5 couples female sex hormones to the rewiring of the thymus during pregnancy. Genetic deletion of Rank (also known as Tnfrsf11a) in thymic epithelial cells results in impaired thymic involution and blunted expansion of natural regulatory T (Treg) cells in pregnant female mice. Sex hormones, in particular progesterone, drive the development of thymic Treg cells through RANK in a manner that depends on AIRE+ medullary thymic epithelial cells. The depletion of Rank in the mouse thymic epithelium results in reduced accumulation of natural Treg cells in the placenta, and an increase in the number of miscarriages. Thymic deletion of Rank also results in impaired accumulation of Treg cells in visceral adipose tissue, and is associated with enlarged adipocyte size, tissue inflammation, enhanced maternal glucose intolerance, fetal macrosomia, and a long-lasting transgenerational alteration in glucose homeostasis, which are all key hallmarks of gestational diabetes. Transplantation of Treg cells rescued fetal loss, maternal glucose intolerance and fetal macrosomia. In human pregnancies, we found that gestational diabetes also correlates with a reduced number of Treg cells in the placenta. Our findings show that RANK promotes the hormone-mediated development of thymic Treg cells during pregnancy, and expand the functional role of maternal Treg cells to the development of gestational diabetes and the transgenerational metabolic rewiring of glucose homeostasis.


Subject(s)
Diabetes, Gestational/immunology , Fetal Death/etiology , Receptor Activator of Nuclear Factor-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Adipocytes/pathology , Animals , Cell Proliferation , Diabetes, Gestational/etiology , Diabetes, Gestational/metabolism , Diabetes, Gestational/pathology , Epithelial Cells/immunology , Female , Fetus/immunology , Fetus/metabolism , Fetus/pathology , Glucose/metabolism , Glucose Intolerance/genetics , Humans , Intra-Abdominal Fat/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Placenta/immunology , Placenta/pathology , Pregnancy , Receptor Activator of Nuclear Factor-kappa B/deficiency , Receptor Activator of Nuclear Factor-kappa B/genetics , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Transcription Factors/metabolism , AIRE Protein
3.
Cell ; 140(1): 148-60, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20074523

ABSTRACT

Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.


Subject(s)
Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Obesity/genetics , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipogenesis , Animals , Cyclic AMP/metabolism , Glucocorticoids/metabolism , Humans , Mice , Mice, Knockout , Muscle Cells/metabolism , Repressor Proteins/genetics
4.
Cell ; 143(4): 628-38, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21074052

ABSTRACT

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


Subject(s)
Calcium Channels/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Pain/genetics , Adult , Animals , Back Pain/genetics , Calcium Channels/metabolism , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Hot Temperature , Humans , Mice , Polymorphism, Single Nucleotide , RNA Interference
6.
Nature ; 563(7732): 564-568, 2018 11.
Article in English | MEDLINE | ID: mdl-30405245

ABSTRACT

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Subject(s)
Autoimmune Diseases/immunology , Biopterins/analogs & derivatives , Neoplasms/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Administration, Oral , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/pathology , Biopterins/biosynthesis , Biopterins/metabolism , Biopterins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Coenzymes/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Humans , Hypersensitivity/immunology , Iron/metabolism , Kynurenine/metabolism , Kynurenine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
7.
FASEB J ; 34(4): 5951-5966, 2020 04.
Article in English | MEDLINE | ID: mdl-32157739

ABSTRACT

Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.


Subject(s)
Ganglia, Spinal/pathology , Hyperalgesia/pathology , Macrophages/pathology , Neuralgia/pathology , Neurons/pathology , Peripheral Nerve Injuries/complications , Receptors, sigma/physiology , Animals , Behavior, Animal , Disease Models, Animal , Female , Ganglia, Spinal/immunology , Ganglia, Spinal/metabolism , Hyperalgesia/etiology , Hyperalgesia/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neuralgia/etiology , Neuralgia/metabolism , Neurons/immunology , Neurons/metabolism , Sigma-1 Receptor
8.
Immunity ; 37(2): 314-25, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22902232

ABSTRACT

γδ T cells respond rapidly to keratinocyte damage, providing essential contributions to the skin wound healing process. The molecular interactions regulating their response are unknown. Here, we identify a role for interaction of plexin B2 with the CD100 receptor in epithelial repair. In vitro blocking of plexin B2 or CD100 inhibited γδ T cell activation. Furthermore, CD100 deficiency in vivo resulted in delayed repair of cutaneous wounds due to a disrupted γδ T cell response to keratinocyte damage. Ligation of CD100 in γδ T cells induced cellular rounding via signals through ERK kinase and cofilin. Defects in this rounding process were evident in the absence of CD100-mediated signals, thereby providing a mechanistic explanation for the defective wound healing in CD100-deficient animals. The discovery of immune functions for plexin B2 and CD100 provides insight into the complex cell-cell interactions between epithelial resident γδ T cells and the neighboring cells they support.


Subject(s)
Antigens, CD/immunology , Langerhans Cells/immunology , Nerve Tissue Proteins/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Semaphorins/immunology , T-Lymphocytes/immunology , Actin Depolymerizing Factors/metabolism , Animals , Antigens, CD/metabolism , CHO Cells , Cell Communication/immunology , Cell Shape , Cricetinae , Epidermis/immunology , Epidermis/injuries , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Keratinocytes/immunology , Keratinocytes/metabolism , Langerhans Cells/metabolism , Lymphocyte Activation/immunology , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Phosphorylation , Protein Binding/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Semaphorins/metabolism , Sequence Analysis, Protein , Surface Plasmon Resonance , T-Lymphocytes/metabolism , Wound Healing/immunology
9.
PLoS Genet ; 14(10): e1007688, 2018 10.
Article in English | MEDLINE | ID: mdl-30325918

ABSTRACT

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion.


Subject(s)
Drosophila Proteins/genetics , IMP Dehydrogenase/genetics , Neoplasms/genetics , Tetraspanin 29/genetics , Animals , Animals, Genetically Modified , Carcinogenesis/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genes, ras , Genetic Testing/methods , Humans , IMP Dehydrogenase/metabolism , Male , Mice , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes , Signal Transduction , Tetraspanin 29/metabolism , Tumor Suppressor Proteins/genetics
10.
Cell Metab ; 36(5): 886-888, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718754

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive, malignant, and lethal cancers, displaying strong resistance to immunotherapy. In this issue of Cell Metabolism, a study by Liu et al. identifies tetrahydrobiopterin metabolic dysregulation as a key driver for the immunosuppressive PDAC environment in mouse and human.


Subject(s)
Biopterins , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Mice , Biopterins/analogs & derivatives , Biopterins/metabolism , Immunosuppression Therapy
11.
Sci Immunol ; 9(98): eadh0545, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178277

ABSTRACT

Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.


Subject(s)
Mast Cells , Pain, Postoperative , Serotonin , Mast Cells/immunology , Serotonin/metabolism , Animals , Pain, Postoperative/immunology , Mice , Humans , Mice, Inbred C57BL , Substance P/metabolism , Male , Mice, Knockout , Tryptophan Hydroxylase/metabolism
12.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38238601

ABSTRACT

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Glycerylphosphorylcholine , Phospholipases , Aged , Animals , Humans , Mice , Aging/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Metabolic Networks and Pathways , Muscle, Skeletal/metabolism , Phospholipases/metabolism , Glycerylphosphorylcholine/metabolism
13.
Front Pharmacol ; 14: 1173599, 2023.
Article in English | MEDLINE | ID: mdl-37251335

ABSTRACT

The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.

14.
Bio Protoc ; 13(9): e4666, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37188109

ABSTRACT

Management of neuropathic pain is notoriously difficult; current analgesics, including anti-inflammatory- and opioid-based medications, are generally ineffective and can pose serious side effects. There is a need to uncover non-addictive and safe analgesics to combat neuropathic pain. Here, we describe the setup of a phenotypic screen whereby the expression of an algesic gene,Gch1, is targeted. GCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), a metabolite linked to neuropathic pain in both animal models and in human chronic pain sufferers.Gch1is induced in sensory neurons after nerve injury and its upregulation is responsible for increased BH4 levels. GCH1 protein has proven to be a difficult enzyme to pharmacologically target with small molecule inhibition. Thus, by establishing a platform to monitor and target inducedGch1 expression in individual injured dorsal root ganglion (DRG) neurons in vitro, we can screen for compounds that regulate its expression levels. This approach also allows us to gain valuable biological insights into the pathways and signals regulating GCH1 and BH4 levels upon nerve injury. This protocol is compatible with any transgenic reporter system in which the expression of an algesic gene (or multiple genes) can be monitored fluorescently. Such an approach can be scaled up for high-throughput compound screening and is amenable to transgenic mice as well as human stem cell-derived sensory neurons. Graphical overview.

15.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214906

ABSTRACT

Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.

16.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-37293068

ABSTRACT

Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.

17.
Nat Metab ; 5(3): 495-515, 2023 03.
Article in English | MEDLINE | ID: mdl-36941451

ABSTRACT

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Subject(s)
Failure to Thrive , RNA Nucleotidyltransferases , Animals , Humans , Mice , Mice, Knockout , Muscle Weakness/genetics , Muscles , RNA Nucleotidyltransferases/chemistry , RNA Nucleotidyltransferases/genetics , Zebrafish
18.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214873

ABSTRACT

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

19.
Sci Rep ; 12(1): 9383, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672347

ABSTRACT

Neuromedin B (NMB) is a member of the neuromedin family of neuropeptides with a high level of region-specific expression in the brain. Several GWAS studies on non-obese and obese patients suggested that polymorphisms in NMB predispose to obesity by affecting appetite control and feeding preference. Furthermore, several studies proposed that NMB can act as an insulin releasing peptide. Since the functional study has never been done, the in vivo role of NMB as modulator of weight gain or glucose metabolism remains unclear. Here, we generated Nmb conditional mice and nervous system deficient NmB mice. We then performed olfactory and food preference analysis, as well as metabolic analysis under standard and high fat diet. Additionally, in direct islet studies we evaluated the role of NMB on basal and glucose-stimulated insulin secretion in mouse and humans.


Subject(s)
Insulin , Neuropeptides , Animals , Body Weight , Glucose , Homeostasis , Humans , Insulin/metabolism , Mice , Neurokinin B/analogs & derivatives , Neurokinin B/metabolism , Neuropeptides/genetics , Obesity/genetics
20.
Nat Commun ; 13(1): 7335, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443325

ABSTRACT

Type 2 diabetes mellitus is one of the most prevalent metabolic diseases presenting with systemic pathologies, including reproductive disorders in male diabetic patients. However, the molecular mechanisms that contributing to spermatogenesis dysfunction in diabetic patients have not yet been fully elucidated. Here, we perform STRT-seq to examine the transcriptome of diabetic patients' testes at single-cell resolution including all major cell types of the testis. Intriguingly, whereas spermatogenesis appears largely preserved, the gene expression profiles of Sertoli cells and the blood-testis barrier (BTB) structure are dramatically impaired. Among these deregulate pathways, the Apelin (APLN) peptide/Apelin-receptor (APJ) axis is hyper-activated in diabetic patients' testes. Mechanistically, APLN is produced locally by Sertoli cells upon high glucose treatment, which subsequently suppress the production of carnitine and repress the expression of cell adhesion genes in Sertoli cells. Together, these effects culminate in BTB structural dysfunction. Finally, using the small molecule APLN receptor antagonist, ML221, we show that blocking APLN/APJ significantly ameliorate the BTB damage and, importantly, improve functional spermatogenesis in diabetic db/db mice. We also translate and validate these findings in cultured human testes. Our findings identify the APLN/APJ axis as a promising therapeutic target to improve reproduction capacity in male diabetic patients.


Subject(s)
Blood-Testis Barrier , Diabetes Mellitus, Type 2 , Animals , Humans , Male , Mice , Apelin , Apelin Receptors/genetics , Spermatogenesis , Testis
SELECTION OF CITATIONS
SEARCH DETAIL