Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Chem Lab Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862497

ABSTRACT

OBJECTIVES: Autoimmune nodopathy (AN) is a life-threatening peripheral neuropathy mediated by four autoantibodies targeting axoglial cell adhesion molecules at the nodes of Ranvier: Neurofascin-155 (Nfasc155), PanNeurofascin (PanNfasc), Contactin-1 (CNTN1), and Contactin-associated protein 1 (CASPR1). Antibody detection is a strong biomarker for AN diagnosis and treatment monitoring. The aim of this study was to develop an immuno-dot assay (immuno-DOT) compatible with routine implementation in medical laboratories. METHODS: This new approach was compared to standard techniques: indirect immunofluorescence assay, cell-based assay, and ELISA. Sensitivities (Se) and specificities (Sp) were calculated on a cohort composed of 58 patients diagnosed with AN, 50 seronegative patients with chronic inflammatory demyelinating polyradiculoneuropathy, 20 healthy controls, 30 patients with Guillain-Barré syndrome, 20 with monoclonal gammopathy and 20 with Charcot-Marie-Tooth disease. The patients were diagnosed with AN based on compatible electro-clinical arguments and at least two positive standard techniques. RESULTS: Immuno-DOT sensitivities and specificities were Se=91 %, Sp=97 % for anti-Nfasc155; Se=80 %, Sp=94 % for anti-PanNfasc; Se=93 %, Sp=98 % for anti-CNTN1; and Se=87 %, Sp=94 % for anti-CASPR1. Immuno-DOT allowed the diagnosis within 3 h and the accurate follow-up of the immune reactivity and isotype, and dot intensity correlated with antibody titers following treatments. A longitudinal study indicated that immuno-DOT yielded reliable results even after six months of storage at -20 °C. CONCLUSIONS: The diagnostic performance of immuno-DOT was satisfactory and compatible with routine implementation in medical laboratories.

2.
J Peripher Nerv Syst ; 29(1): 116-119, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123899

ABSTRACT

AIM: Autoimmune nodopathies have specific clinicopathologic features, antibodies directed against nodal proteins (neurofascin 186) or paranodal proteins (neurofascin 155, contactin 1, contactin-associated protein 1 (Caspr1)), and usually have a poor response to first-line therapies for chronic inflammatory demyelinating polyradiculoneuropathy. Anti-Caspr1 nodopathy treated with autologous hematopoietic stem cell transplantation (AHSCT) has not been previously reported. METHODS: We report the first case of an anti-Caspr1 antibody-positive nodopathy refractory to high-intensity immunosuppressive treatment, including rituximab, that responded dramatically to AHSCT. RESULTS: A 53-year-old woman presented with a rapidly progressive generalized ataxic, painful motor, and inflammatory neuropathy supported by neurophysiologic and MRI studies. Initial tests for antibodies to nodal/paranodal proteins were negative. She was treated with multiple courses of intravenous immunoglobulin and methylprednisolone, plasma exchange, rituximab, and cyclophosphamide without significant clinical benefit. Repeated testing for antibodies to nodal/paranodal proteins yielded a positive result for anti-Caspr1/IgG4 isotype antibodies. Given the poor response to multiple high intensity treatments and the relatively young age of the patient, we decided to perform AHSCT at 30 months post-onset. Immediately after AHSCT, she stopped all immunomodulatory or immunosuppressive therapy. The Overall Neuropathy Limitation Score improved from 8/12 to 4/12 at 6 months post-AHSCT. At 3 months post-AHSCT, IgG4 against Caspr1 was negative and no reactivity against paranodes could be detected. CONCLUSION: We report a particularly severe anti-Caspr1 antibody autoimmune nodopathy that responded dramatically to AHSCT. Although the rarity of the disease limits the possibility of larger studies, AHSCT may be a valuable therapy in treatment-refractory cases.


Subject(s)
Hematopoietic Stem Cell Transplantation , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Female , Humans , Child, Preschool , Middle Aged , Rituximab/therapeutic use , Axons/pathology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy , Immunoglobulin G , Autoantibodies
3.
Eur J Neurol ; 30(2): 490-500, 2023 02.
Article in English | MEDLINE | ID: mdl-36366904

ABSTRACT

BACKGROUND AND PURPOSE: In addition to combined central and peripheral demyelination, other immune diseases could involve both the central nervous system (CNS) and peripheral nervous system (PNS). METHODS: To identify immune-mediated diseases responsible for symptomatic combined central/peripheral nervous system involvement (ICCPs), we conducted a multicentric retrospective study and assessed clinical, electrophysiological, and radiological features of patients fulfilling our ICCP criteria. RESULTS: Thirty patients (20 males) were included and followed during a median of 79.5 months (interquartile range [IQR] = 43-145). The median age at onset was 51.5 years (IQR = 39-58). Patients were assigned to one of four groups: (i) monophasic disease with concomitant CNS/PNS involvement including anti-GQ1b syndrome (acute polyradiculoneuropathy + rhombencephalitis, n = 2), checkpoint inhibitor-related toxicities (acute polyradiculoneuropathy + encephalitis, n = 3), and anti-glial fibrillary acidic protein astrocytopathy (subacute polyradiculoneuropathy and meningoencephalomyelitis with linear gadolinium enhancements, n = 2); (ii) chronic course with concomitant CNS/PNS involvement including paraneoplastic syndromes (ganglionopathy/peripheral hyperexcitability + limbic encephalitis, n = 4); (iii) chronic course with sequential CNS/PNS involvement including POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes) syndrome (polyradiculoneuropathy + strokes, n = 2), histiocytosis (polyradiculoneuropathy + lepto-/pachymeningitis, n = 1), and systemic vasculitis (multineuropathy + CNS vasculitis/pachymeningitis, n = 2); and (iv) chronic course with concomitant or sequential CNS/PNS involvement including combined central and peripheral demyelination (polyradiculoneuropathy + CNS demyelinating lesions, n = 10) and connective tissue diseases (ganglionopathy/radiculopathy/multineuropathy + limbic encephalitis/transverse myelitis/stroke, n = 4). CONCLUSIONS: We diagnosed nine ICCPs. The timing of central and peripheral manifestations and the disease course help determine the underlying immune disease. When antibody against neuroglial antigen is identified, CNS and PNS involvement is systematically concomitant, suggesting a common CNS/PNS antigen and a simultaneous disruption of blood-nerve and blood-brain barriers.


Subject(s)
Demyelinating Diseases , Immune System Diseases , Limbic Encephalitis , Polyradiculoneuropathy , Adult , Humans , Male , Middle Aged , Demyelinating Diseases/complications , Immune System Diseases/complications , Limbic Encephalitis/complications , Peripheral Nervous System , Polyradiculoneuropathy/complications , Retrospective Studies , Female
4.
Brain ; 144(4): 1183-1196, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33880507

ABSTRACT

Previous studies have described the clinical, serological and pathological features of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and antibodies directed against the paranodal proteins neurofascin-155, contactin-1 (CNTN1), contactin-associated protein-1 (Caspr1), or nodal forms of neurofascin. Such antibodies are useful for diagnosis and potentially treatment selection. However, antibodies targeting Caspr1 only or the Caspr1/CNTN1 complex have been reported in few patients with CIDP. Moreover, it is unclear if these patients belong to the same pathophysiological subgroup. Using cell-based assays in routine clinical testing, we identified sera from patients with CIDP showing strong membrane reactivity when both CNTN1 and Caspr1 were co-transfected (but not when CNTN1 was transfected alone). Fifteen patients (10 male; aged between 40 and 75) with antibodies targeting Caspr1/CNTN1 co-transfected cells were enrolled for characterization. The prevalence of anti-Caspr1/CNTN1 antibodies was 1.9% (1/52) in the Sant Pau CIDP cohort, and 4.3% (1/23) in a German cohort of acute-onset CIDP. All patients fulfilled European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite diagnostic criteria for CIDP. Seven (47%) were initially diagnosed with Guillain-Barré syndrome due to an acute-subacute onset. Six (40%) patients had cranial nerve involvement, eight (53%) reported neuropathic pain and 12 (80%) ataxia. Axonal involvement and acute denervation were frequent in electrophysiological studies. Complete response to intravenous immunoglobulin was not observed, while most (90%) responded well to rituximab. Enzyme-linked immunosorbent assay (ELISA) and teased nerve fibre immunohistochemistry confirmed reactivity against the paranodal Caspr1/CNTN1 complex. Weaker reactivity against Caspr1 transfected alone was also detected in 10/15 (67%). Sera from 13 of these patients were available for testing by ELISA. All 13 samples reacted against Caspr1 by ELISA and this reactivity was enhanced when CNTN1 was added to the Caspr1 ELISA. IgG subclasses were also investigated by ELISA. IgG4 was the predominant subclass in 10 patients, while IgG3 was predominant in other three patients. In conclusion, patients with antibodies to the Caspr1/CNTN1 complex display similar serological and clinical features and constitute a single subgroup within the CIDP syndrome. These antibodies likely target Caspr1 primarily and are detected with Caspr1-only ELISA, but reactivity is optimal when CNTN1 is added to Caspr1 in cell-based assays and ELISA.


Subject(s)
Autoantibodies/immunology , Autoantigens/immunology , Cell Adhesion Molecules, Neuronal/immunology , Contactin 1/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adult , Aged , Female , Humans , Male , Middle Aged
5.
Kidney Int ; 100(6): 1240-1249, 2021 12.
Article in English | MEDLINE | ID: mdl-34600965

ABSTRACT

Primary membranous nephropathy (MN) is an autoimmune glomerular disease in which autoantibodies are directed against podocyte proteins. In about 80% of cases the main targeted antigen is the phospholipase A2 receptor 1 (PLA2R1). Anti-PLA2R1 antibodies are mainly immunoglobulin G type 4 (IgG4). However, the antigenic target remains to be defined in 20% of cases. MN can be associated with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system where a common antigenic target has yet to be identified. To ascertain a possible novel target antigen, we analyzed kidney biopsies from five patients positive for anti-contactin 1 antibodies and presenting with MN combined with chronic inflammatory demyelinating polyneuropathy. Eluted IgG from biopsy sections against contactin 1 and nerve tissue were screened. Western blot revealed contactin 1 expression in normal kidney glomeruli. Confocal microscopic analysis showed the presence and colocalization of contactin 1 and IgG4 on the glomerular basement membrane of these patients. Glomerular contactin 1 was absent in patients with anti-PLA2R1-associated MN or membranous lupus nephritis or a healthy control. The eluted IgG from contactin 1-positive biopsy sections but not the IgG eluted from patients with PLA2R1 MN bound contactin 1 with the main eluted subclass IgG4. Eluted IgG could bind paranodal tissue (myelinated axon) and colocalized with commercial anti-contactin 1 antibody. Thus, contactin 1 is a novel common antigenic target in MN associated with chronic inflammatory demyelinating polyneuropathy. However, the precise pathophysiology remains to be elucidated.


Subject(s)
Contactin 1 , Glomerulonephritis, Membranous , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Autoantibodies , Glomerulonephritis, Membranous/diagnosis , Humans , Immunoglobulin G , Receptors, Phospholipase A2
6.
Brain ; 142(10): 2948-2964, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31501903

ABSTRACT

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.


Subject(s)
Cell Adhesion Molecules/genetics , Demyelinating Diseases/genetics , Nerve Growth Factors/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Alleles , Axons/metabolism , Cell Adhesion Molecules/metabolism , Child , Child, Preschool , Demyelinating Diseases/metabolism , Female , Gene Frequency/genetics , Humans , Infant , Male , Mutation , Myelin Sheath/genetics , Myelin Sheath/metabolism , Nerve Fibers, Myelinated/physiology , Nerve Growth Factors/metabolism , Nervous System Malformations , Neurodevelopmental Disorders/metabolism , Neuroglia/metabolism , Pedigree , Peripheral Nerves , Protein Isoforms/metabolism , Ranvier's Nodes/genetics , Ranvier's Nodes/metabolism
7.
Am J Hum Genet ; 99(4): 928-933, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27616481

ABSTRACT

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy of the sciatic nerve from one of the affected individuals showed a marked lengthening defect of the nodes. The GLDN mutations found in the affected individuals abolish the cell surface localization of gliomedin and its interaction with its axonal partner, neurofascin-186 (NF186), in a cell-based assay. The axoglial contact between gliomedin and NF186 is essential for the initial clustering of Na+ channels at developing nodes. These results indicate a major role of gliomedin in node formation and the development of the peripheral nervous system in humans. These data indicate that mutations of GLDN or CNTNAP1 (MIM: 616286), encoding essential components of the nodes of Ranvier and paranodes, respectively, lead to inherited nodopathies, a distinct disease entity among peripheral neuropathies.


Subject(s)
Arthrogryposis/genetics , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Ranvier's Nodes/metabolism , Alleles , Axons/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Exome/genetics , Female , Fetal Death , Humans , Infant, Newborn , Male , Membrane Proteins/metabolism , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/metabolism , Pedigree , Protein Binding/genetics , Ranvier's Nodes/ultrastructure
8.
J Biol Chem ; 292(6): 2441-2456, 2017 02 10.
Article in English | MEDLINE | ID: mdl-27979964

ABSTRACT

The nodes of Ranvier are essential regions for action potential conduction in myelinated fibers. They are enriched in multimolecular complexes composed of voltage-gated Nav and Kv7 channels associated with cell adhesion molecules. Cytoskeletal proteins ankyrin-G (AnkG) and ßIV-spectrin control the organization of these complexes and provide mechanical support to the plasma membrane. IQCJ-SCHIP1 is a cytoplasmic protein present in axon initial segments and nodes of Ranvier. It interacts with AnkG and is absent from nodes and axon initial segments of ßIV-spectrin and AnkG mutant mice. Here, we show that IQCJ-SCHIP1 also interacts with ßIV-spectrin and Kv7.2/3 channels and self-associates, suggesting a scaffolding role in organizing nodal proteins. IQCJ-SCHIP1 binding requires a ßIV-spectrin-specific domain and Kv7 channel 1-5-10 calmodulin-binding motifs. We then investigate the role of IQCJ-SCHIP1 in vivo by studying peripheral myelinated fibers in Schip1 knock-out mutant mice. The major nodal proteins are normally enriched at nodes in these mice, indicating that IQCJ-SCHIP1 is not required for their nodal accumulation. However, morphometric and ultrastructural analyses show an altered shape of nodes similar to that observed in ßIV-spectrin mutant mice, revealing that IQCJ-SCHIP1 contributes to nodal membrane-associated cytoskeleton organization, likely through its interactions with the AnkG/ßIV-spectrin network. Our work reveals that IQCJ-SCHIP1 interacts with several major nodal proteins, and we suggest that it contributes to a higher organizational level of the AnkG/ßIV-spectrin network critical for node integrity.


Subject(s)
Ankyrins/metabolism , Carrier Proteins/metabolism , Ranvier's Nodes/metabolism , Animals , Biopolymers/metabolism , COS Cells , Carrier Proteins/chemistry , Chlorocebus aethiops , Mice , Mice, Mutant Strains , Motor Activity , Peripheral Nervous System/physiology , Peripheral Nervous System/ultrastructure
9.
Glia ; 66(4): 801-812, 2018 04.
Article in English | MEDLINE | ID: mdl-29282769

ABSTRACT

Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and ßIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.


Subject(s)
Axons/metabolism , Cell Membrane/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Ranvier's Nodes/metabolism , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/growth & development , Ganglia, Spinal/metabolism , Membrane Glycoproteins/genetics , Mice, Knockout , Mitochondria/metabolism , Nerve Tissue Proteins/genetics , Neuroglia/cytology , Rats , Sciatic Nerve/cytology , Sciatic Nerve/growth & development , Sciatic Nerve/metabolism , Sodium Channels/metabolism , Spinal Cord/cytology , Spinal Cord/growth & development , Spinal Cord/metabolism
10.
Muscle Nerve ; 57(2): 320-324, 2018 02.
Article in English | MEDLINE | ID: mdl-28667708

ABSTRACT

INTRODUCTION: We present a painful small-fiber neuropathy variant of Guillain-Barré syndrome characterized by antecedent infectious symptoms, hyporeflexia, and albuminocytologic dissociation. METHODS: Two patients received intravenous immunoglobulin, one corticosteroids. RESULTS: The patients subsequently improved. Immunoglobulin G (IgG) antibodies in their acute phase sera strongly bound to murine small nerve fibers, and the binding disappeared during the convalescent phase. Serum transfer to a murine nociceptive model induced transient alteration in thermal pain responses. DISCUSSION: Our case series suggest that an acute transient immune response can be directed against small nerve fibers, and that patients so affected can exhibit features of Guillain-Barré syndrome. Muscle Nerve 57: 320-324, 2018.


Subject(s)
Autoimmune Diseases/pathology , Guillain-Barre Syndrome/pathology , Pain/pathology , Small Fiber Neuropathy/pathology , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Animals , Autoantibodies/pharmacology , Autoimmune Diseases/drug therapy , Female , Foot/innervation , Foot/pathology , Guillain-Barre Syndrome/drug therapy , Humans , Immunization, Passive , Immunoglobulin G/immunology , Male , Mice , Nerve Fibers/pathology , Pain/drug therapy , Pain Measurement , Small Fiber Neuropathy/drug therapy , Young Adult
11.
Brain ; 140(7): 1851-1858, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28575198

ABSTRACT

Chronic inflammatory demyelination polyneuropathy is a heterogeneous and treatable immune-mediated disorder that lacks biomarkers to support diagnosis. Recent evidence indicates that paranodal proteins (contactin 1, contactin-associated protein 1, and neurofascin-155) are the targets of autoantibodies in subsets of patients showing distinct clinical presentations. Here, we identified neurofascin-186 and neurofascin-140 as the main targets of autoantibodies in five patients presenting IgG reactivity against the nodes of Ranvier. Four patients displayed predominantly IgG4 antibodies, and one patient presented IgG3 antibodies that activated the complement pathway in vitro. These patients present distinct clinical features compared to those with anti-neurofascin-155 IgG4. Most patients had a severe phenotype associated with conduction block or decreased distal motor amplitude. Four patients had a subacute-onset and sensory ataxia. Two patients presented with nephrotic syndromes and one patient with an IgG4-related retroperitoneal fibrosis. Intravenous immunoglobulin and corticosteroids were effective in three patients, and one patient remitted following rituximab treatment. Clinical remission was associated with autoantibody depletion and with recovery of conduction block and distal motor amplitude suggesting a nodo-paranodopathy. Our data demonstrate that the pathogenic mechanisms responsible for chronic inflammatory demyelination polyneuropathy are broad and may include dysfunctions at the nodes of Ranvier in a subgroup of patients.


Subject(s)
Autoantibodies/immunology , Cell Adhesion Molecules/immunology , Nerve Growth Factors/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Autoantibodies/blood , Case-Control Studies , Child , Child, Preschool , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , Neural Conduction/physiology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/blood , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Protein Isoforms/immunology , Ranvier's Nodes/immunology , Rituximab/therapeutic use , Young Adult
12.
J Neuroinflammation ; 14(1): 224, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29145880

ABSTRACT

BACKGROUND: The aim of the research is to study the human leukocyte antigen (HLA) class II allele frequencies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) associated with anti-neurofascin 155 (NF155) antibodies. METHODS: Thirteen anti-NF155+ and 35 anti-NF155 negative (anti-NF155neg) CIDP patients were included in a case-control study. The frequencies of the DRB1 HLA allele were analyzed in all patients while DQ frequencies were only studied in patients sharing the DRB1*15 allele. In silico HLA-peptide binding and NF155 antigenicity, predictions were performed to analyze overlap between presented peptides and antigenic regions. RESULTS: DRB1*15 alleles (DRB1*15:01 and DRB1*15:02) were present in 10 out of 13 anti-NF155+ CIDP patients and in only 5 out of 35 anti-NF155neg CIDP patients (77 vs 14%; OR = 20, CI = 4.035 to 99.13). DRB1*15 alleles appeared also in significantly higher proportions in anti-NF155+ CIDP than in normal population (77 vs 17%; OR = 16.9, CI = 4.434 to 57.30). Seven anti-NF155+ CIDP patients (53%) and 5 anti-NF155neg CIDP patients had the DRB1*15:01 allele (OR = 7, p = 0.009), while 3 anti-NF155+ CIDP patients and none of the anti-NF155neg CIDP patients had the DRB1*15:02 allele (OR = 23.6, p = 0.016). In silico analysis of the NF155 peptides binding to DRB1*15 alleles showed significant overlap in the peptides presented by the 15:01 and 15:02 alleles, suggesting functional homology. CONCLUSIONS: DRB1*15 alleles are the first strong risk factor associated to a CIDP subset, providing additional evidence that anti-NF155+ CIDP patients constitute a differentiated disease within the CIDP syndrome.


Subject(s)
Cell Adhesion Molecules/immunology , Genetic Predisposition to Disease/genetics , HLA-DRB1 Chains/genetics , Nerve Growth Factors/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/genetics , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adult , Aged , Autoantibodies/immunology , Autoantigens/immunology , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged
13.
Epilepsia ; 58(12): 2073-2084, 2017 12.
Article in English | MEDLINE | ID: mdl-29067685

ABSTRACT

OBJECTIVE: Kv7 channels mediate the voltage-gated M-type potassium current. Reduction of M current due to KCNQ2 mutations causes early onset epileptic encephalopathies (EOEEs). Mutations in STXBP1 encoding the syntaxin binding protein 1 can produce a phenotype similar to that of KCNQ2 mutations, suggesting a possible link between STXBP1 and Kv7 channels. These channels are known to be modulated by syntaxin-1A (Syn-1A) that binds to the C-terminal domain of the Kv7.2 subunit and strongly inhibits M current. Here, we investigated whether STXBP1could prevent this inhibitory effect of Syn-1A and analyzed the consequences of two mutations in STXBP1 associated with EOEEs. METHODS: Electrophysiologic analysis of M currents mediated by homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 channels in Chinese hamster ovary (CHO) cells coexpressing Syn-1A and/or STXBP1 or mutants STXBP1 p.W28* and p.P480L. Expression and interaction of these different proteins have been investigated using biochemical and co-immunoprecipitation experiments. RESULTS: Syn-1A decreased M currents mediated by Kv7.2 or Kv7.2/Kv7.3 channels. STXBP1 had no direct effects on M current but dampened the inhibition produced by Syn-1A by abrogating Syn-1A binding to Kv7 channels. The mutation p.W28*, but not p.P480L, failed to rescue M current from Syn-1A inhibition. Biochemical analysis showed that unlike the mutation p.W28*, the mutation p.P480L did not affect STXBP1 expression and reduced the interaction of Syn-1A with Kv7 channels. SIGNIFICANCE: These data indicate that there is a functional link between STXBP1 and Kv7 channels via Syn-1A, which may be important for regulating M-channel activity and neuronal excitability. They suggest also that a defect in Kv7 channel activity or regulation could be one of the consequences of some STXBP1 mutations associated with EOEEs. Furthermore, our data reveal that STXBP1 mutations associated with the Ohtahara syndrome do not necessarily result in protein haploinsufficiency.


Subject(s)
KCNQ2 Potassium Channel/genetics , Munc18 Proteins/genetics , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Spasms, Infantile/genetics , Syntaxin 1/pharmacology , Animals , Biotinylation , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Electroencephalography , Humans , KCNQ1 Potassium Channel/antagonists & inhibitors , KCNQ1 Potassium Channel/genetics , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/genetics
14.
Brain ; 139(Pt 6): 1700-12, 2016 06.
Article in English | MEDLINE | ID: mdl-27017186

ABSTRACT

Paranodal axoglial junctions formed by the association of contactin-1, contactin-associated protein 1, and neurofascin-155, play important functions in nerve impulse propagation along myelinated axons. Autoantibodies to contactin-1 and neurofascin-155 define chronic inflammatory demyelinating polyradiculoneuropathy subsets of patients with specific clinical features. These autoantibodies are mostly of the IgG4 isotype, but their pathogenicity has not been proven. Here, we investigated the mechanisms how IgG subclasses to contactin-1 affect conduction. We show that purified anti-contactin-1 IgG1 and IgG4 bind to paranodes. To determine whether these isotypes can pass the paranodal barrier, we incubated isolated sciatic nerves with the purified antibody or performed intraneural injections. We found that IgG4 diffused into the paranodal regions in vitro or after intraneural injections. IgG4 infiltration was slow and progressive. In 24 h, IgG4 accessed the paranode borders near the nodal lumen, and completely fill the paranodal segments by 3 days. By contrast, control IgG, anti-contactin-1 IgG1, or even anti-contactin-associated-protein-2 IgG4 did not pass the paranodal barrier. To determine whether chronic exposure to these antibodies is pathogenic, we passively transferred anti-contactin-1 IgG1 and IgG4 into Lewis rats immunized with P2 peptide. IgG4 to contactin-1, but not IgG1, induced progressive clinical deteriorations combined with gait ataxia. No demyelination, axonal degeneration, or immune infiltration were observed. Instead, these animals presented a selective loss of the paranodal specialization in motor neurons characterized by the disappearance of the contactin-associated protein 1/contactin-1/neurofascin-155 complex at paranodes. Paranode destruction did not affect nodal specialization, but resulted in a moderate node lengthening. The sensory nerves and dorsal root ganglion were not affected in these animals. Electrophysiological examination further supported these results and revealed strong nerve activity loss affecting predominantly small diameter or slow conducting motor axons. These deficits partly matched with those found in patients: proximal motor involvement, gait ataxia, and a demyelinating neuropathy that showed early axonal features. The animal model thus seemed to replicate the early deteriorations in these patients and pointed out that paranodal loss in mature fibres results in conduction defects, but not conduction slowing. Our findings indicate that IgG4 directed against contactin-1 are pathogenic and are reliable biomarkers of a specific subset of chronic inflammatory demyelinating polyneuropathy patients. These antibodies appear to loosen the paranodal barrier, thereby favouring antibody progression and causing paranodal collapse.


Subject(s)
Contactin 1/immunology , Immunoglobulin G/immunology , Neural Conduction/immunology , Ranvier's Nodes/immunology , Sciatic Nerve/metabolism , Animals , Autoantibodies/immunology , Autoantibodies/metabolism , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal/immunology , Cell Adhesion Molecules, Neuronal/metabolism , Contactin 1/metabolism , Humans , Immunoglobulin G/metabolism , Male , Membrane Proteins/immunology , Membrane Proteins/metabolism , Nerve Growth Factors/immunology , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism , Neural Conduction/physiology , Ranvier's Nodes/metabolism , Rats
15.
Epilepsia ; 57(5): e87-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27030113

ABSTRACT

Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons. Herein, we investigated functional consequences and subcellular distribution of the p.V175L mutation of Kv7.2 (Kv7.2(V175L) ) found in a patient presenting EOEE. We observed that the mutation produced a 25-40 mV hyperpolarizing shift of the conductance-voltage relationship of both the homomeric Kv7.2(V175L) and heteromeric Kv7.2(V175L) /Kv7.3 channels compared to wild-type channels and a 10 mV hyperpolarizing shift of Kv7.2(V175L) /Kv7.2/Kv7.3 channels in a 1:1:2 ratio mimicking the patient situation. Mutant channels also displayed faster activation kinetics and an increased current density that was prevented by 1 µm linopirdine. The p.V175L mutation did not affect the protein expression of Kv7 channels and its localization at the axon initial segment. We conclude that p.V175L is a gain of function mutation. This confirms previous observations showing that mutations having opposite consequences on M channels can produce EOEE. These findings alert us that drugs aiming to increase Kv7 channel activity might have adverse effects in EOEE in the case of gain-of-function variants.


Subject(s)
KCNQ2 Potassium Channel/genetics , Polymorphism, Single Nucleotide/genetics , Spasms, Infantile/genetics , Animals , Ankyrins/metabolism , Anticonvulsants/pharmacology , CHO Cells , Carbamates/pharmacology , Cricetulus , Electric Stimulation , Female , Hippocampus/cytology , Humans , Indoles/pharmacology , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Phenylenediamines/pharmacology , Potassium Channel Blockers/pharmacology , Pyridines/pharmacology
17.
Brain ; 138(Pt 6): 1484-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25808373

ABSTRACT

A Spanish group recently reported that four patients with chronic inflammatory demyelinating polyneuropathy carrying IgG4 autoantibodies against contactin 1 showed aggressive symptom onset and poor response to intravenous immunoglobulin. We aimed to describe the clinical and serological features of Japanese chronic inflammatory demyelinating polyneuropathy patients displaying the anti-contactin 1 antibodies. Thirteen of 533 (2.4%) patients with chronic inflammatory demyelinating polyneuropathy had anti-contactin 1 IgG4 whereas neither patients from disease or normal control subjects did (P = 0.02). Three of 13 (23%) patients showed subacute symptom onset, but all of the patients presented with sensory ataxia. Six of 10 (60%) anti-contactin 1 antibody-positive patients had poor response to intravenous immunoglobulin, whereas 8 of 11 (73%) antibody-positive patients had good response to corticosteroids. Anti-contactin 1 IgG4 antibodies are a possible biomarker to guide treatment option.


Subject(s)
Ataxia/immunology , Autoantibodies/immunology , Biomarkers, Pharmacological/blood , Contactin 1/immunology , Ganglia, Spinal/metabolism , Immunoglobulin G/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Ataxia/blood , Ataxia/complications , Ataxia/drug therapy , Autoantibodies/blood , Case-Control Studies , Cells, Cultured , Contactin 1/metabolism , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/blood , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/complications , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Retrospective Studies
18.
Neurobiol Dis ; 80: 80-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26007637

ABSTRACT

Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.


Subject(s)
Brain/physiopathology , Epilepsy/genetics , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/physiology , Animals , Brain/metabolism , CHO Cells , Cells, Cultured , Cricetulus , Epilepsy/diagnosis , Epilepsy/physiopathology , Hippocampus/metabolism , Humans , KCNQ2 Potassium Channel/metabolism , Mutation , Neurons/metabolism , Phenotype
19.
Mol Cell Neurosci ; 58: 40-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24333508

ABSTRACT

Mutations in KCNQ2 and KCNQ3 genes are responsible for benign familial neonatal seizures and epileptic encephalopathies. Some of these mutations have been shown to alter the binding of calmodulin (CaM) to specific C-terminal motifs of KCNQ subunits, known as the A and B helices. Here, we show that the mutation I342A in the A helix of KCNQ3 abolishes CaM interaction and strongly decreases the heteromeric association with KCNQ2. The assembly of KCNQ2 with KCNQ3 is essential for their expression at the axon initial segment (AIS). We find that the I342A mutation alters the targeting of KCNQ2/3 subunits at the AIS. However, the traffic of the mutant channels was rescued by provision of exogenous CaM. We show that CaM enhances the heteromeric association of KCNQ2/KCNQ3-I342A subunits by binding to their B helices in a calcium-dependent manner. To further assert the implication of CaM in channel assembly, we inserted a mutation in the second coil-coil domain of KCNQ2 (KCNQ2-L638P) to prevent its heteromerization with KCNQ3. We observe that the expression of a Ca(2+)-insensitive form of CaM favours the assembly of KCNQ3 with KCNQ2-L638P. Our data thus indicate that both apoCaM and Ca(2+)/CaM bind to the C-terminal domains of KCNQ2 and KCNQ3 subunits, and regulate their heteromeric assembly. Hence, CaM may control the composition and distribution of KCNQ channels in neurons.


Subject(s)
Calmodulin/metabolism , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Protein Multimerization , Amino Acid Sequence , Animals , Cells, Cultured , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/chemistry , KCNQ3 Potassium Channel/genetics , Male , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Protein Transport , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL