Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
2.
Hum Mol Genet ; 31(11): 1762-1775, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34897462

ABSTRACT

BACKGROUND: Higher birthweight is associated with higher adult body mass index (BMI). Alleles that predispose to greater adult adiposity might act in fetal life to increase fetal growth and birthweight. Whether there are fetal effects of recently identified adult metabolically favorable adiposity alleles on birthweight is unknown. AIM: We aimed to test the effect on birthweight of fetal genetic predisposition to higher metabolically favorable adult adiposity and compare that with the effect of fetal genetic predisposition to higher adult BMI. METHODS: We used published genome wide association study data (n = upto 406 063) to estimate fetal effects on birthweight (adjusting for maternal genotype) of alleles known to raise metabolically favorable adult adiposity or BMI. We combined summary data across single nucleotide polymorphisms (SNPs) with random effects meta-analyses. We performed weighted linear regression of SNP-birthweight effects against SNP-adult adiposity effects to test for a dose-dependent association. RESULTS: Fetal genetic predisposition to higher metabolically favorable adult adiposity and higher adult BMI were both associated with higher birthweight (3 g per effect allele (95% CI: 1-5) averaged over 14 SNPs; P = 0.002; 0.5 g per effect allele (95% CI: 0-1) averaged over 76 SNPs; P = 0.042, respectively). SNPs with greater effects on metabolically favorable adiposity tended to have greater effects on birthweight (R2 = 0.2912, P = 0.027). There was no dose-dependent association for BMI (R2 = -0.0019, P = 0.602). CONCLUSIONS: Fetal genetic predisposition to both higher adult metabolically favorable adiposity and BMI is associated with birthweight. Fetal effects of metabolically favorable adiposity-raising alleles on birthweight are modestly proportional to their effects on future adiposity, but those of BMI-raising alleles are not.


Subject(s)
Adiposity , Genome-Wide Association Study , Adiposity/genetics , Adult , Alleles , Birth Weight/genetics , Body Mass Index , Genetic Predisposition to Disease , Humans , Obesity/genetics , Polymorphism, Single Nucleotide/genetics
3.
BMC Med ; 22(1): 32, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38281920

ABSTRACT

BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Pre-Eclampsia , Female , Humans , Infant, Newborn , Pregnancy , Body Mass Index , Cesarean Section , Hypertension, Pregnancy-Induced/epidemiology , Pre-Eclampsia/epidemiology , Mendelian Randomization Analysis
4.
BMC Pregnancy Childbirth ; 24(1): 238, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575863

ABSTRACT

BACKGROUND: The causal relationship between maternal smoking in pregnancy and reduced offspring birth weight is well established and is likely due to impaired placental function. However, observational studies have given conflicting results on the association between smoking and placental weight. We aimed to estimate the causal effect of newly pregnant mothers quitting smoking on their placental weight at the time of delivery. METHODS: We used one-sample Mendelian randomization, drawing data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (N = 690 to 804) and the Norwegian Mother, Father and Child Cohort Study (MoBa) (N = 4267 to 4606). The sample size depends on the smoking definition used for different analyses. The analysis was performed in pre-pregnancy smokers only, due to the specific role of the single-nucleotide polymorphism (SNP) rs1051730 (CHRNA5 - CHRNA3 - CHRNB4) in affecting smoking cessation but not initiation. RESULTS: Fixed effect meta-analysis showed a 182 g [95%CI: 29,335] higher placental weight for pre-pregnancy smoking mothers who continued smoking at the beginning of pregnancy, compared with those who stopped smoking. Using the number of cigarettes smoked per day in the first trimester as the exposure, the causal effect on placental weight was 11 g [95%CI: 1,21] per cigarette per day. Similarly, smoking at the end of pregnancy was causally associated with higher placental weight. Using the residuals of birth weight regressed on placental weight as the outcome, we showed evidence of lower offspring birth weight relative to the placental weight, both for continuing smoking at the start of pregnancy as well as continuing smoking throughout pregnancy (change in z-score birth weight adjusted for z-score placental weight: -0.8 [95%CI: -1.6,-0.1]). CONCLUSION: Our results suggest that continued smoking during pregnancy causes higher placental weights.


Subject(s)
Mendelian Randomization Analysis , Placenta , Female , Humans , Pregnancy , Birth Weight/genetics , Cohort Studies , Longitudinal Studies , Smoking/adverse effects
5.
Hum Mol Genet ; 30(11): 1057-1066, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33682876

ABSTRACT

Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Subject(s)
Birth Weight/genetics , Developmental Disabilities/genetics , Genetic Predisposition to Disease , Rare Diseases/genetics , Birth Weight/physiology , Developmental Disabilities/epidemiology , Developmental Disabilities/pathology , Genome-Wide Association Study , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Rare Diseases/epidemiology
6.
Hum Mol Genet ; 30(24): 2371-2382, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34270736

ABSTRACT

Higher adiposity is an established risk factor for psychiatric diseases including depression and anxiety. The associations between adiposity and depression may be explained by the metabolic consequences and/or by the psychosocial impact of higher adiposity. We performed one- and two- sample Mendelian randomization (MR) in up to 145 668 European participants from the UK Biobank to test for a causal effect of higher adiposity on 10 well-validated mental health and well-being outcomes derived using the Mental Health Questionnaire (MHQ). We used three sets of adiposity genetic instruments: (a) a set of 72 BMI genetic variants, (b) a set of 36 favourable adiposity variants and (c) a set of 38 unfavourable adiposity variants. We additionally tested causal relationships (1) in men and women separately, (2) in a subset of individuals not taking antidepressants and (3) in non-linear MR models. Two-sample MR provided evidence that a genetically determined one standard deviation (1-SD) higher BMI (4.6 kg/m2) was associated with higher odds of current depression [OR: 1.50, 95%CI: 1.15, 1.95] and lower well-being [ß: -0.15, 95%CI: -0.26, -0.04]. Findings were similar when using the metabolically favourable and unfavourable adiposity variants, with higher adiposity associated with higher odds of depression and lower well-being scores. Our study provides further evidence that higher BMI causes higher odds of depression and lowers well-being. Using genetics to separate out metabolic and psychosocial effects, our study suggests that in the absence of adverse metabolic effects higher adiposity remains causal to depression and lowers well-being.


Subject(s)
Adiposity , Mendelian Randomization Analysis , Adiposity/genetics , Body Mass Index , Female , Humans , Male , Mental Health , Obesity/complications
7.
BMC Med ; 21(1): 37, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726144

ABSTRACT

BACKGROUND: Extensive evidence links higher body mass index (BMI) to higher odds of depression in people of European ancestry. However, our understanding of the relationship across different settings and ancestries is limited. Here, we test the relationship between body composition and depression in people of East Asian ancestry. METHODS: Multiple Mendelian randomisation (MR) methods were used to test the relationship between (a) BMI and (b) waist-hip ratio (WHR) with depression. Firstly, we performed two-sample MR using genetic summary statistics from a recent genome-wide association study (GWAS) of depression (with 15,771 cases and 178,777 controls) in people of East Asian ancestry. We selected 838 single nucleotide polymorphisms (SNPs) correlated with BMI and 263 SNPs correlated with WHR as genetic instrumental variables to estimate the causal effect of BMI and WHR on depression using the inverse-variance weighted (IVW) method. We repeated these analyses stratifying by home location status: China versus UK or USA. Secondly, we performed one-sample MR in the China Kadoorie Biobank (CKB) in 100,377 participants. This allowed us to test the relationship separately in (a) males and females and (b) urban and rural dwellers. We also examined (c) the linearity of the BMI-depression relationship. RESULTS: Both MR analyses provided evidence that higher BMI was associated with lower odds of depression. For example, a genetically-instrumented 1-SD higher BMI in the CKB was associated with lower odds of depressive symptoms [OR: 0.77, 95% CI: 0.63, 0.95]. There was evidence of differences according to place of residence. Using the IVW method, higher BMI was associated with lower odds of depression in people of East Asian ancestry living in China but there was no evidence for an association in people of East Asian ancestry living in the USA or UK. Furthermore, higher genetic BMI was associated with differential effects in urban and rural dwellers within China. CONCLUSIONS: This study provides the first MR evidence for an inverse relationship between BMI and depression in people of East Asian ancestry. This contrasts with previous findings in European populations and therefore the public health response to obesity and depression is likely to need to differ based on sociocultural factors for example, ancestry and place of residence. This highlights the importance of setting-specific causality when using genetic causal inference approaches and data from diverse populations to test hypotheses. This is especially important when the relationship tested is not purely biological and may involve sociocultural factors.


Subject(s)
Body Composition , Depression , East Asian People , Genome-Wide Association Study , Female , Humans , Male , Body Composition/genetics , Body Mass Index , Depression/epidemiology , Depression/genetics , Mendelian Randomization Analysis , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , China
8.
PLoS Genet ; 16(12): e1009191, 2020 12.
Article in English | MEDLINE | ID: mdl-33284794

ABSTRACT

Babies born clinically Small- or Large-for-Gestational-Age (SGA or LGA; sex- and gestational age-adjusted birth weight (BW) <10th or >90th percentile, respectively), are at higher risks of complications. SGA and LGA include babies who have experienced environment-related growth-restriction or overgrowth, respectively, and babies who are heritably small or large. However, the relative proportions within each group are unclear. We assessed the extent to which common genetic variants underlying variation in birth weight influence the probability of being SGA or LGA. We calculated independent fetal and maternal genetic scores (GS) for BW in 11,951 babies and 5,182 mothers. These scores capture the direct fetal and indirect maternal (via intrauterine environment) genetic contributions to BW, respectively. We also calculated maternal fasting glucose (FG) and systolic blood pressure (SBP) GS. We tested associations between each GS and probability of SGA or LGA. For the BW GS, we used simulations to assess evidence of deviation from an expected polygenic model. Higher BW GS were strongly associated with lower odds of SGA and higher odds of LGA (ORfetal = 0.75 (0.71,0.80) and 1.32 (1.26,1.39); ORmaternal = 0.81 (0.75,0.88) and 1.17 (1.09,1.25), respectively per 1 decile higher GS). We found evidence that the smallest 3% of babies had a higher BW GS, on average, than expected from their observed birth weight (assuming an additive polygenic model: Pfetal = 0.014, Pmaternal = 0.062). Higher maternal SBP GS was associated with higher odds of SGA P = 0.005. We conclude that common genetic variants contribute to risk of SGA and LGA, but that additional factors become more important for risk of SGA in the smallest 3% of babies.


Subject(s)
Birth Weight/genetics , Multifactorial Inheritance , Polymorphism, Genetic , Adult , Female , Humans , Infant, Newborn , Infant, Small for Gestational Age , Male
9.
Hum Mol Genet ; 29(R1): R66-R72, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32886111

ABSTRACT

In recent years, genome-wide association studies have shed light on the genetics of early growth and its links with later-life health outcomes. Large-scale datasets and meta-analyses, combined with recently developed analytical methods, have enabled dissection of the maternal and fetal genetic contributions to variation in birth weight. Additionally, longitudinal approaches have shown differences between the genetic contributions to infant, childhood and adult adiposity. In contrast, studies of adult height loci have shown strong associations with early body length and childhood height. Early growth-associated loci provide useful tools for causal analyses: Mendelian randomization (MR) studies have provided evidence that early BMI and height are causally related to a number of adult health outcomes. We advise caution in the design and interpretation of MR studies of birth weight investigating effects of fetal growth on later-life cardiometabolic disease because birth weight is only a crude indicator of fetal growth, and the choice of genetic instrument (maternal or fetal) will greatly influence the interpretation of the results. Most genetic studies of early growth have to date centered on European-ancestry participants and outcomes measured at a single time-point, so key priorities for future studies of early growth genetics are aggregation of large samples of diverse ancestries and longitudinal studies of growth trajectories.


Subject(s)
Fetal Development/genetics , Genome-Wide Association Study , Growth Disorders/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , White People/genetics , Birth Weight , Growth Disorders/epidemiology , Humans , Phenotype
10.
Mol Psychiatry ; 26(11): 6305-6316, 2021 11.
Article in English | MEDLINE | ID: mdl-34099873

ABSTRACT

Late diurnal preference has been linked to poorer mental health outcomes, but the understanding of the causal role of diurnal preference on mental health and wellbeing is currently limited. Late diurnal preference is often associated with circadian misalignment (a mismatch between the timing of the endogenous circadian system and behavioural rhythms), so that evening people live more frequently against their internal clock. This study aims to quantify the causal contribution of diurnal preference on mental health outcomes, including anxiety, depression and general wellbeing and test the hypothesis that more misaligned individuals have poorer mental health and wellbeing using an actigraphy-based measure of circadian misalignment. Multiple Mendelian Randomisation (MR) approaches were used to test causal pathways between diurnal preference and seven well-validated mental health and wellbeing outcomes in up to 451,025 individuals. In addition, observational analyses tested the association between a novel, objective measure of behavioural misalignment (Composite Phase Deviation, CPD) and seven mental health and wellbeing outcomes. Using genetic instruments identified in the largest GWAS for diurnal preference, we provide robust evidence that early diurnal preference is protective for depression and improves wellbeing. For example, using one-sample MR, a twofold higher genetic liability of morningness was associated with lower odds of depressive symptoms (OR: 0.92, 95% CI: 0.88, 0.97). It is possible that behavioural factors including circadian misalignment may contribute in the chronotype depression relationship, but further work is needed to confirm these findings.


Subject(s)
Circadian Rhythm , Mental Health , Anxiety/genetics , Circadian Rhythm/genetics , Humans , Risk Factors , Sleep/genetics , Surveys and Questionnaires
11.
BMC Pediatr ; 22(1): 504, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008798

ABSTRACT

BACKGROUND: Human birthweight is a complex, multifactorial trait. Maternal characteristics contribute to birthweight variation by influencing the intrauterine environment. Variation explained by genetic effects is also important, but their contributions have not been assessed alongside other key determinants. We aimed to investigate variance in birthweight explained by genetic scores in addition to easily-measurable clinical and anthropometric variables. METHODS: We analysed 549 European-ancestry parent-offspring trios from a UK community-based birth cohort. We investigated variance explained in birthweight (adjusted for sex and gestational age) in multivariable linear regression models including genetic scores, routinely-measured maternal characteristics, and parental anthropometric variables. We used R-Squared (R2) to estimate variance explained, adjusted R-squared (Adj-R2) to assess improvement in model fit from added predictors, and F-tests to compare nested models. RESULTS: Maternal and fetal genetic scores together explained 6.0% variance in birthweight. A model containing maternal age, weight, smoking, parity and 28-week fasting glucose explained 21.7% variance. Maternal genetic score explained additional variance when added to maternal characteristics (Adj-R2 = 0.233 vs Adj-R2 = 0.210, p < 0.001). Fetal genetic score improved variance explained (Adj-R2 = 0.264 vs 0.248, p < 0.001) when added to maternal characteristics and parental heights. CONCLUSIONS: Genetic scores account for variance explained in birthweight in addition to easily measurable clinical variables. Parental heights partially capture fetal genotype and its contribution to birthweight, but genetic scores explain additional variance. While the genetic contribution is modest, it is comparable to that of individual clinical characteristics such as parity, which suggests that genetics could be included in tools aiming to predict risk of high or low birthweights.


Subject(s)
Infant, Low Birth Weight , Birth Weight/genetics , Female , Gestational Age , Humans , Infant, Newborn , Maternal Age , Parity , Pregnancy
12.
Diabetologia ; 64(4): 717-726, 2021 04.
Article in English | MEDLINE | ID: mdl-33569631

ABSTRACT

In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.


Subject(s)
Birth Weight/genetics , Diabetes Mellitus, Type 2/genetics , Fetal Growth Retardation/genetics , Infant, Low Birth Weight , Insulin-Secreting Cells/metabolism , Insulin/blood , Mutation , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Fetal Growth Retardation/blood , Fetal Growth Retardation/epidemiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant, Low Birth Weight/blood , Infant, Newborn , Insulin Resistance/genetics , Mendelian Randomization Analysis , Phenotype , Risk Assessment , Risk Factors
13.
Diabetologia ; 64(12): 2790-2802, 2021 12.
Article in English | MEDLINE | ID: mdl-34542646

ABSTRACT

AIMS/HYPOTHESIS: Higher maternal BMI during pregnancy is associated with higher offspring birthweight, but it is not known whether this is solely the result of adverse metabolic consequences of higher maternal adiposity, such as maternal insulin resistance and fetal exposure to higher glucose levels, or whether there is any effect of raised adiposity through non-metabolic (e.g. mechanical) factors. We aimed to use genetic variants known to predispose to higher adiposity, coupled with a favourable metabolic profile, in a Mendelian randomisation (MR) study comparing the effect of maternal 'metabolically favourable adiposity' on offspring birthweight with the effect of maternal general adiposity (as indexed by BMI). METHODS: To test the causal effects of maternal metabolically favourable adiposity or general adiposity on offspring birthweight, we performed two-sample MR. We used variants identified in large, published genetic-association studies as being associated with either higher adiposity and a favourable metabolic profile, or higher BMI (n = 442,278 and n = 322,154 for metabolically favourable adiposity and BMI, respectively). We then extracted data on the metabolically favourable adiposity and BMI variants from a large, published genetic-association study of maternal genotype and offspring birthweight controlling for fetal genetic effects (n = 406,063 with maternal and/or fetal genotype effect estimates). We used several sensitivity analyses to test the reliability of the results. As secondary analyses, we used data from four cohorts (total n = 9323 mother-child pairs) to test the effects of maternal metabolically favourable adiposity or BMI on maternal gestational glucose, anthropometric components of birthweight and cord-blood biomarkers. RESULTS: Higher maternal adiposity with a favourable metabolic profile was associated with lower offspring birthweight (-94 [95% CI -150, -38] g per 1 SD [6.5%] higher maternal metabolically favourable adiposity, p = 0.001). By contrast, higher maternal BMI was associated with higher offspring birthweight (35 [95% CI 16, 53] g per 1 SD [4 kg/m2] higher maternal BMI, p = 0.0002). Sensitivity analyses were broadly consistent with the main results. There was evidence of outlier SNPs for both exposures; their removal slightly strengthened the metabolically favourable adiposity estimate and made no difference to the BMI estimate. Our secondary analyses found evidence to suggest that a higher maternal metabolically favourable adiposity decreases pregnancy fasting glucose levels while a higher maternal BMI increases them. The effects on neonatal anthropometric traits were consistent with the overall effect on birthweight but the smaller sample sizes for these analyses meant that the effects were imprecisely estimated. We also found evidence to suggest that higher maternal metabolically favourable adiposity decreases cord-blood leptin while higher maternal BMI increases it. CONCLUSIONS/INTERPRETATION: Our results show that higher adiposity in mothers does not necessarily lead to higher offspring birthweight. Higher maternal adiposity can lead to lower offspring birthweight if accompanied by a favourable metabolic profile. DATA AVAILABILITY: The data for the genome-wide association studies (GWAS) of BMI are available at https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files . The data for the GWAS of body fat percentage are available at https://walker05.u.hpc.mssm.edu .


Subject(s)
Adiposity , Genome-Wide Association Study , Adiposity/genetics , Birth Weight , Body Mass Index , Female , Humans , Infant, Newborn , Pregnancy , Reproducibility of Results
14.
PLoS Med ; 17(8): e1003305, 2020 08.
Article in English | MEDLINE | ID: mdl-32841251

ABSTRACT

BACKGROUND: Many maternal traits are associated with a neonate's gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved. METHODS AND FINDINGS: Based on 10,734 mother-infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p = 2.2 × 10-4). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p < 1 × 10-17). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p = 1.6 × 10-4). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p = 9.4 × 10-3), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p = 3.3 × 10-2 and p = 4.5 × 10-3, respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p = 4.7 × 10-6); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p = 2.2 × 10-3). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p = 6.4 × 10-3) and a stronger fetal effect (p = 1.3 × 10-5). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p = 1.8 × 10-4) and increased maternal systolic BP during pregnancy (p = 2.2 × 10-2). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits. CONCLUSIONS: We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk-increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.


Subject(s)
Birth Weight/physiology , Body Height/physiology , Genome-Wide Association Study/methods , Haplotypes/genetics , Phenotype , Polymorphism, Single Nucleotide/physiology , Adult , Case-Control Studies , Cohort Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Female , Genetic Testing/methods , Humans , Infant, Newborn , Male , Pregnancy , Prospective Studies
15.
Am J Obstet Gynecol ; 223(3): 312-321, 2020 09.
Article in English | MEDLINE | ID: mdl-32565236

ABSTRACT

Recent revolutionary advances at the intersection of medicine, omics, data sciences, computing, epidemiology, and related technologies inspire us to ponder their impact on health. Their potential impact is particularly germane to the biology of pregnancy and perinatal medicine, where limited improvement in health outcomes for women and children has remained a global challenge. We assembled a group of experts to establish a Pregnancy Think Tank to discuss a broad spectrum of major gestational disorders and adverse pregnancy outcomes that affect maternal-infant lifelong health and should serve as targets for leveraging the many recent advances. This report reflects avenues for future effects that hold great potential in 3 major areas: developmental genomics, including the application of methodologies designed to bridge genotypes, physiology, and diseases, addressing vexing questions in early human development; gestational physiology, from immune tolerance to growth and the timing of parturition; and personalized and population medicine, focusing on amalgamating health record data and deep phenotypes to create broad knowledge that can be integrated into healthcare systems and drive discovery to address pregnancy-related disease and promote general health. We propose a series of questions reflecting development, systems biology, diseases, clinical approaches and tools, and population health, and a call for scientific action. Clearly, transdisciplinary science must advance and accelerate to address adverse pregnancy outcomes. Disciplines not traditionally involved in the reproductive sciences, such as computer science, engineering, mathematics, and pharmacology, should be engaged at the study design phase to optimize the information gathered and to identify and further evaluate potentially actionable therapeutic targets. Information sources should include noninvasive personalized sensors and monitors, alongside instructive "liquid biopsies" for noninvasive pregnancy assessment. Future research should also address the diversity of human cohorts in terms of geography, racial and ethnic distributions, and social and health disparities. Modern technologies, for both data-gathering and data-analyzing, make this possible at a scale that was previously unachievable. Finally, the psychosocial and economic environment in which pregnancy takes place must be considered to promote the health and wellness of communities worldwide.


Subject(s)
Health Promotion/trends , Pregnancy Outcome , Economics , Female , Fetal Development/genetics , Fetal Development/physiology , Humans , Perinatal Care , Pregnancy , Pregnancy Complications/ethnology , Pregnancy Complications/genetics , Pregnancy Complications/physiopathology , Pregnancy Outcome/epidemiology , Pregnancy Outcome/genetics , Psychology
16.
PLoS Med ; 16(6): e1002828, 2019 06.
Article in English | MEDLINE | ID: mdl-31211782

ABSTRACT

BACKGROUND: Systematic reviews of randomised controlled trials (RCTs) have suggested that maternal vitamin D (25[OH]D) and calcium supplementation increase birth weight. However, limitations of many trials were highlighted in the reviews. Our aim was to combine genetic and RCT data to estimate causal effects of these two maternal traits on offspring birth weight. METHODS AND FINDINGS: We performed two-sample mendelian randomisation (MR) using genetic instrumental variables associated with 25(OH)D and calcium that had been identified in genome-wide association studies (GWAS; sample 1; N = 122,123 for 25[OH]D and N = 61,275 for calcium). Associations between these maternal genetic variants and offspring birth weight were calculated in the UK Biobank (UKB) (sample 2; N = 190,406). We used data on mother-child pairs from two United Kingdom birth cohorts (combined N = 5,223) in sensitivity analyses to check whether results were influenced by fetal genotype, which is correlated with the maternal genotype (r ≈ 0.5). Further sensitivity analyses to test the reliability of the results included MR-Egger, weighted-median estimator, 'leave-one-out', and multivariable MR analyses. We triangulated MR results with those from RCTs, in which we used randomisation to supplementation with vitamin D (24 RCTs, combined N = 5,276) and calcium (6 RCTs, combined N = 543) as an instrumental variable to determine the effects of 25(OH)D and calcium on birth weight. In the main MR analysis, there was no strong evidence of an effect of maternal 25(OH)D on birth weight (difference in mean birth weight -0.03 g [95% CI -2.48 to 2.42 g, p = 0.981] per 10% higher maternal 25[OH]D). The effect estimate was consistent across our MR sensitivity analyses. Instrumental variable analyses applied to RCTs suggested a weak positive causal effect (5.94 g [95% CI 2.15-9.73, p = 0.002] per 10% higher maternal 25[OH]D), but this result may be exaggerated because of risk of bias in the included RCTs. The main MR analysis for maternal calcium also suggested no strong evidence of an effect on birth weight (-20 g [95% CI -44 to 5 g, p = 0.116] per 1 SD higher maternal calcium level). Some sensitivity analyses suggested that the genetic instrument for calcium was associated with birth weight via exposures that are independent of calcium levels (horizontal pleiotropy). Application of instrumental variable analyses to RCTs suggested that calcium has a substantial effect on birth weight (178 g [95% CI 121-236 g, p = 1.43 × 10-9] per 1 SD higher maternal calcium level) that was not consistent with any of the MR results. However, the RCT instrumental variable estimate may have been exaggerated because of risk of bias in the included RCTs. Other study limitations include the low response rate of UK Biobank, which may bias MR estimates, and the lack of suitable data to test whether the effects of genetic instruments on maternal calcium levels during pregnancy were the same as those outside of pregnancy. CONCLUSIONS: Our results suggest that maternal circulating 25(OH)D does not influence birth weight in otherwise healthy newborns. However, the effect of maternal circulating calcium on birth weight is unclear and requires further exploration with more research including RCT and/or MR analyses with more valid instruments.


Subject(s)
Birth Weight/physiology , Calcium/blood , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Vitamin D/analogs & derivatives , Adult , Biomarkers/blood , Female , Genetic Variation/genetics , Humans , Infant, Newborn , Longitudinal Studies , Male , Maternal Health , Pregnancy , Vitamin D/blood , Vitamin D/genetics
17.
Hum Mol Genet ; 26(5): 1018-1030, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28040731

ABSTRACT

As genetic association studies increase in size to 100 000s of individuals, subtle biases may influence conclusions. One possible bias is 'index event bias' (IEB) that appears due to the stratification by, or enrichment for, disease status when testing associations between genetic variants and a disease-associated trait. We aimed to test the extent to which IEB influences some known trait associations in a range of study designs and provide a statistical framework for assessing future associations. Analyzing data from 113 203 non-diabetic UK Biobank participants, we observed three (near TCF7L2, CDKN2AB and CDKAL1) overestimated (body mass index (BMI) decreasing) and one (near MTNR1B) underestimated (BMI increasing) associations among 11 type 2 diabetes risk alleles (at P < 0.05). IEB became even stronger when we tested a type 2 diabetes genetic risk score composed of these 11 variants (-0.010 standard deviations BMI per allele, P = 5 × 10- 4), which was confirmed in four additional independent studies. Similar results emerged when examining the effect of blood pressure increasing alleles on BMI in normotensive UK Biobank samples. Furthermore, we demonstrated that, under realistic scenarios, common disease alleles would become associated at P < 5 × 10- 8 with disease-related traits through IEB alone, if disease prevalence in the sample differs appreciably from the background population prevalence. For example, some hypertension and type 2 diabetes alleles will be associated with BMI in sample sizes of >500 000 if the prevalence of those diseases differs by >10% from the background population. In conclusion, IEB may result in false positive or negative genetic associations in very large studies stratified or strongly enriched for/against disease cases.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hypertension/genetics , Alleles , Blood Glucose/genetics , Body Mass Index , Genotype , Humans , Hypertension/pathology , Obesity/genetics , Polymorphism, Single Nucleotide
18.
Genet Med ; 21(4): 877-886, 2019 04.
Article in English | MEDLINE | ID: mdl-30181606

ABSTRACT

PURPOSE: Many women with X chromosome aneuploidy undergo lifetime clinical monitoring for possible complications. However, ascertainment of cases in the clinic may mean that the penetrance has been overestimated. METHODS: We characterized the prevalence and phenotypic consequences of X chromosome aneuploidy in a population of 244,848 women over 40 years of age from UK Biobank, using single-nucleotide polymorphism (SNP) array data. RESULTS: We detected 30 women with 45,X; 186 with mosaic 45,X/46,XX; and 110 with 47,XXX. The prevalence of nonmosaic 45,X (12/100,000) and 47,XXX (45/100,000) was lower than expected, but was higher for mosaic 45,X/46,XX (76/100,000). The characteristics of women with 45,X were consistent with the characteristics of a clinically recognized Turner syndrome phenotype, including short stature and primary amenorrhea. In contrast, women with mosaic 45,X/46,XX were less short, had a normal reproductive lifespan and birth rate, and no reported cardiovascular complications. The phenotype of women with 47,XXX included taller stature (5.3 cm; SD = 5.52 cm; P = 5.8 × 10-20) and earlier menopause age (5.12 years; SD = 5.1 years; P = 1.2 × 10-14). CONCLUSION: Our results suggest that the clinical management of women with 45,X/46,XX mosaicism should be minimal, particularly those identified incidentally.


Subject(s)
Chromosomes, Human, X/genetics , Genetics, Population , Mosaicism , Turner Syndrome/genetics , Adult , Aged , Aneuploidy , Female , Humans , Karyotype , Middle Aged , Penetrance , Phenotype , Polymorphism, Single Nucleotide/genetics , Trisomy , Turner Syndrome/pathology , United Kingdom
19.
PLoS Genet ; 12(8): e1006125, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27494321

ABSTRACT

Disrupted circadian rhythms and reduced sleep duration are associated with several human diseases, particularly obesity and type 2 diabetes, but until recently, little was known about the genetic factors influencing these heritable traits. We performed genome-wide association studies of self-reported chronotype (morning/evening person) and self-reported sleep duration in 128,266 white British individuals from the UK Biobank study. Sixteen variants were associated with chronotype (P<5x10-8), including variants near the known circadian rhythm genes RGS16 (1.21 odds of morningness, 95% CI [1.15, 1.27], P = 3x10-12) and PER2 (1.09 odds of morningness, 95% CI [1.06, 1.12], P = 4x10-10). The PER2 signal has previously been associated with iris function. We sought replication using self-reported data from 89,283 23andMe participants; thirteen of the chronotype signals remained associated at P<5x10-8 on meta-analysis and eleven of these reached P<0.05 in the same direction in the 23andMe study. We also replicated 9 additional variants identified when the 23andMe study was used as a discovery GWAS of chronotype (all P<0.05 and meta-analysis P<5x10-8). For sleep duration, we replicated one known signal in PAX8 (2.6 minutes per allele, 95% CI [1.9, 3.2], P = 5.7x10-16) and identified and replicated two novel associations at VRK2 (2.0 minutes per allele, 95% CI [1.3, 2.7], P = 1.2x10-9; and 1.6 minutes per allele, 95% CI [1.1, 2.2], P = 7.6x10-9). Although we found genetic correlation between chronotype and BMI (rG = 0.056, P = 0.05); undersleeping and BMI (rG = 0.147, P = 1x10-5) and oversleeping and BMI (rG = 0.097, P = 0.04), Mendelian Randomisation analyses, with limited power, provided no consistent evidence of causal associations between BMI or type 2 diabetes and chronotype or sleep duration. Our study brings the total number of loci associated with chronotype to 22 and with sleep duration to three, and provides new insights into the biology of sleep and circadian rhythms in humans.


Subject(s)
Circadian Rhythm/genetics , Diabetes Mellitus, Type 2/genetics , PAX8 Transcription Factor/genetics , Protein Serine-Threonine Kinases/genetics , Sleep/genetics , Body Mass Index , Diabetes Mellitus, Type 2/pathology , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Obesity/genetics , Obesity/pathology , Sleep/physiology , White People
20.
Hum Mol Genet ; 24(4): 1155-68, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25281659

ABSTRACT

Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; ß = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Body Height/genetics , Genetic Association Studies , Genetic Variation , Membrane Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Age Factors , Alleles , Computational Biology , Databases, Genetic , Genotype , Humans , Infant, Newborn , Membrane Proteins/metabolism , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL