Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Prenat Diagn ; 43(10): 1274-1283, 2023 09.
Article in English | MEDLINE | ID: mdl-37658742

ABSTRACT

OBJECTIVE: Prenatal tracheal occlusion (TO) promotes lung growth and is applied clinically in fetuses with congenital diaphragmatic hernia (CDH). Limited data are available regarding the effect of duration versus timepoint of TO. Our objective was to document the impact of TO on lung development in the near-term period in rats with nitrofen-induced CDH. METHOD: Nitrofen was administered on embryonic day (ED)9 and fetal TO was performed on ED18.5, 19, or 20 (term = ED22). Sham-operated and untouched littermates served as controls. Lungs were harvested in 0.5-day steps and only fetuses with a left-sided CDH were included in further analyses. Healthy fetuses provided a reference for normal near-term lung development. RESULTS: Duration of TO in the nitrofen rat model for CDH predicts lung growth in terms of lung-body-weight ratio as well as an increased mRNA level of the proliferation marker Ki67. Longer TO also induced a more complex airway architecture. The timepoint of TO was not predictive of lung growth. CONCLUSION: In the nitrofen rat model of CDH, a longer period of TO leads to enhanced lung growth and more refined airway architecture.


Subject(s)
Airway Obstruction , Hernias, Diaphragmatic, Congenital , Female , Pregnancy , Animals , Rats , Phenyl Ethers/toxicity , Lung , Cell Proliferation
2.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26443594

ABSTRACT

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Subject(s)
Antigens, Nuclear/genetics , Intellectual Disability/genetics , Cell Cycle Proteins , Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Humans , Male , Problem Behavior , Reverse Transcriptase Polymerase Chain Reaction
3.
Hum Mutat ; 37(8): 804-11, 2016 08.
Article in English | MEDLINE | ID: mdl-27159028

ABSTRACT

Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X-linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing). However, in female ID patients, we hypothesized that the presence of skewing of X-inactivation would be an indicator for an X chromosomal ID cause. We analyzed the X-inactivation patterns of 288 females with ID, and found that 22 (7.6%) had extreme skewing (>90%), which is significantly higher than observed in the general population (3.6%; P = 0.029). Whole-exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A. Interestingly, variants in genes escaping X-inactivation presumably cause both XLID and skewing of X-inactivation in three of these patients. Moreover, variants likely accounting for skewing only were detected in MED12, HDAC8, and TAF9B. All tested candidate causative variants were de novo events. Hence, extreme skewing is a good indicator for the presence of X-linked variants in female patients.


Subject(s)
Genetic Variation , Intellectual Disability/genetics , Sequence Analysis, DNA/methods , X Chromosome Inactivation , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DEAD-box RNA Helicases/genetics , Exome , Female , Humans , Membrane Proteins , Methyl-CpG-Binding Protein 2/genetics , Nuclear Proteins/genetics
4.
Nucleic Acids Res ; 42(9): 5728-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24682812

ABSTRACT

Tandem repeats are short DNA sequences that are repeated head-to-tail with a propensity to be variable. They constitute a significant proportion of the human genome, also occurring within coding and regulatory regions. Variation in these repeats can alter the function and/or expression of genes allowing organisms to swiftly adapt to novel environments. Importantly, some repeat expansions have also been linked to certain neurodegenerative diseases. Therefore, accurate sequencing of tandem repeats could contribute to our understanding of common phenotypic variability and might uncover missing genetic factors in idiopathic clinical conditions. However, despite long-standing evidence for the functional role of repeats, they are largely ignored because of technical limitations in sequencing, mapping and typing. Here, we report on a novel capture technique and data filtering protocol that allowed simultaneous sequencing of thousands of tandem repeats in the human genomes of a three generation family using GS-FLX-plus Titanium technology. Our results demonstrated that up to 7.6% of tandem repeats in this family (4% in coding sequences) differ from the reference sequence, and identified a de novo variation in the family tree. The method opens new routes to look at this underappreciated type of genetic variability, including the identification of novel disease-related repeats.


Subject(s)
Genome, Human , Polymorphism, Genetic , Tandem Repeat Sequences , Base Sequence , Female , Gene Components , Humans , Male , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA
5.
Nat Genet ; 39(5): 593-5, 2007 May.
Article in English | MEDLINE | ID: mdl-17435759

ABSTRACT

We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.


Subject(s)
Cell Differentiation/genetics , Gene Duplication , Genes, myb/genetics , Leukemia-Lymphoma, Adult T-Cell/genetics , T-Lymphocytes/pathology , Cell Differentiation/immunology , Cell Line, Tumor , Chromosomes, Artificial/genetics , Flow Cytometry , Gene Dosage , Gene Expression Regulation, Neoplastic/genetics , Genetic Testing , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Mutation/genetics , Nucleic Acid Hybridization/genetics , RNA, Small Interfering/genetics , Statistics, Nonparametric
6.
Am J Hum Genet ; 91(4): 694-702, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23000143

ABSTRACT

The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.


Subject(s)
Host Cell Factor C1/genetics , Intellectual Disability/genetics , Mutation , RNA, Untranslated/genetics , Amino Acid Sequence , Animals , Astrocytes/metabolism , Binding Sites , Chromatin/genetics , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Mental Retardation, X-Linked/genetics , Mice , Molecular Sequence Data , Transcription Factors/genetics , X Chromosome/genetics , YY1 Transcription Factor/genetics
7.
Am J Hum Genet ; 91(2): 252-64, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22840365

ABSTRACT

We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.


Subject(s)
Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Comparative Genomic Hybridization , Computational Biology , DNA Replication/genetics , Gene Duplication/genetics , Humans , Pedigree , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Tumor Suppressor Proteins
8.
J Hum Genet ; 60(4): 207-11, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25652354

ABSTRACT

Recently, we defined a minimal overlapping region for causal Xp11.22 copy number gains in males with intellectual disability (ID), and identified HECT, UBA and WWE domain-containing protein-1 (HUWE1) as the primary dosage-sensitive gene, whose overexpression leads to ID. In the present study, we used this minimal interval to search for HUWE1 copy number variations by quantitative polymerase chain reaction in a large cohort of Brazilian males with idiopathic ID. We detected two unrelated sporadic individuals with syndromic ID carrying unique overlapping duplications encompassing HUWE1. Breakpoint junction analysis showed a simple tandem duplication in the first patient, which has probably arisen by microhomology-mediated break-induced repair mechanism. In the second patient, the rearrangement is complex having an insertion of an intrachromosomal sequence at its junction. This kind of rearrangement has not been reported in Xp11.22 duplications and might have emerged by a replication- or recombination-based mechanism. Furthermore, the presence of infantile seizures in the second family suggests a potential role of increased KDM5C expression on epilepsy. Our findings highlight the importance of microduplications at Xp11.22 to ID, even in sporadic cases, and reveal new clinical and molecular insight into HUWE1 copy number gains.


Subject(s)
Chromosome Duplication , Chromosomes, Human, X , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Child , DNA Copy Number Variations , Facies , Female , Genetic Association Studies , Humans , Intellectual Disability/diagnosis , Male , Pedigree , Tumor Suppressor Proteins
9.
Hum Mutat ; 35(3): 377-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24357492

ABSTRACT

Copy number gains at Xq28 are a frequent cause of X-linked intellectual disability (XLID). Here, we report on a recurrent 0.5 Mb tandem copy number gain at distal Xq28 not including MECP2, in four male patients with nonsyndromic mild ID and behavioral problems. The genomic region is duplicated in two families and triplicated in a third reflected by more distinctive clinical features. The X-inactivation patterns in carrier females correspond well with their clinical symptoms. Our mapping data confirm that this recurrent gain is likely mediated by nonallelic homologous recombination between two directly oriented Int22h repeats. The affected region harbors eight genes of which RAB39B encoding a small GTPase, was the prime candidate since loss-of-function mutations had been linked to ID. RAB39B is expressed at stable levels in lymphocytes from control individuals, suggesting a tight regulation. mRNA levels in our patients were almost two-fold increased. Overexpression of Rab39b in mouse primary hippocampal neurons demonstrated a significant decrease in neuronal branching as well as in the number of synapses when compared with the control neurons. Taken together, we provide evidence that the increased dosage of RAB39B causes a disturbed neuronal development leading to cognitive impairment in patients with this recurrent copy number gain.


Subject(s)
Chromosomes, Human, X/genetics , DNA Copy Number Variations , Intellectual Disability/genetics , rab GTP-Binding Proteins/genetics , Animals , Belgium , Cell Differentiation , Child , Chromosome Mapping , Estonia , Gene Duplication , Gene Expression Regulation , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Neurons/cytology , Neurons/metabolism , White People , X Chromosome Inactivation
10.
Hum Mutat ; 35(3): 350-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24357517

ABSTRACT

The phosphatidylinositol glycan class A (PIGA) protein is a member of the glycosylphosphatidylinositol anchor pathway. Germline mutations in PIGA located at Xp22.2 are thought to be lethal in males. However, a nonsense mutation in the last coding exon was recently described in two brothers with multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) who survived through birth likely because of the hypomorphic nature of the truncated protein, but died in their first weeks of life. Here, we report on a frameshift mutation early in the PIGA cDNA (c.76dupT; p.Y26Lfs*3) that cosegregates with the disease in a large family diagnosed with a severe syndromic form of X-linked intellectual disability. Unexpectedly, CD59 surface expression suggested the production of a shorter PIGA protein with residual functionality. We provide evidence that the second methionine at position 37 may be used for the translation of a 36 amino acids shorter PIGA. Complementation assays confirmed that this shorter PIGA cDNA was able to partially rescue the surface expression of CD59 in a PIGA-null cell line. Taken together, our data strongly suggest that the early frameshift mutation in PIGA produces a truncated hypomorph, which is sufficient to rescue the lethality in males but not the MCAHS2-like phenotype.


Subject(s)
Frameshift Mutation , Genes, X-Linked , Intellectual Disability/genetics , Membrane Proteins/genetics , Chromosomes, Human, X/genetics , Exome , Exons , Female , Germ-Line Mutation , Humans , Intellectual Disability/mortality , Male , Pedigree , Phenotype , Sequence Analysis, DNA
11.
Hum Genet ; 133(11): 1359-67, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25037250

ABSTRACT

Xq28 microduplications of MECP2 are a prominent cause of a severe syndromic form of intellectual disability (ID) in males. Females are usually unaffected through near to complete X-inactivation of the aberrant X chromosome (skewing). In rare cases, affected females have been described due to random X-inactivation. Here, we report on two female patients carrying de novo MECP2 microduplications on their fully active X chromosomes. Both patients present with ID and additional clinical features. Mono-allelic expression confirmed complete skewing of X-inactivation. Consequently, significantly enhanced MECP2 mRNA levels were observed. We hypothesize that the cause for the complete skewing is due to a more harmful mutation on the other X chromosome, thereby forcing the MECP2 duplication to become active. However, we could not unequivocally identify such a second mutation by array-CGH or exome sequencing. Our data underline that, like in males, increased MECP2 dosage in females can contribute to ID too, which should be taken into account in diagnostics.


Subject(s)
Gene Expression Regulation , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , X Chromosome Inactivation/genetics , Adolescent , Child , Comparative Genomic Hybridization , Exome/genetics , Female , Gene Duplication , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Microsatellite Repeats/genetics , Oligonucleotide Array Sequence Analysis , Pedigree , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
12.
Am J Med Genet A ; 164A(8): 1947-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24737742

ABSTRACT

Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.


Subject(s)
Gene Dosage , Genes, X-Linked , Hypopituitarism/genetics , Neural Tube Defects/genetics , SOXB1 Transcription Factors/genetics , Adolescent , Adult , Chromosome Duplication , Chromosome Mapping , Chromosome Segregation , Chromosomes, Human, X , Comparative Genomic Hybridization , Female , Genotype , Humans , Male , Microsatellite Repeats/genetics , Pedigree , RNA, Messenger/genetics , Risk Factors , Young Adult
13.
J Med Genet ; 50(11): 745-53, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23958657

ABSTRACT

BACKGROUND: Alport syndrome (AS), a hereditary type IV collagen nephropathy, is a major cause of end-stage renal disease in young people. About 85% of the cases are X-linked (ATS), due to mutations in the COL4A5 gene. Rarely, families have a contiguous gene deletion comprising at least exon 1 of COL4A5 and the first exons of COL4A6, associated with the development of diffuse leiomyomatosis (ATS-DL). We report three novel deletions identified in families with AS, one of which challenges the current concepts on genotype-phenotype correlations of ATS/ATS-DL. METHODS: In the setting of a multicentric study aiming to describe the genetic epidemiology and molecular pathology of AS in Portugal, three novel COL4A5 deletions were identified in two families with x-linked Alport syndrome (ATS) and in one family with ATS-DL. These mutations were initially detected by PCR and Multiplex Ligation-dependent Probe Amplification, and further mapped by high-resolution X chromosome-specific oligo-array and PCR. RESULTS: In the ATS-DL family, a COL4A5 deletion spanning exons 2 through 51, extending distally beyond COL4A5 but proximally not into COL4A6, segregated with the disease phenotype. A COL4A5 deletion encompassing exons 2 through 29 was identified in one of the ATS families. In the second ATS family, a deletion of exon 13 of COL4A5 through exon 3 of COL4A6 was detected. CONCLUSIONS: These observations suggest that deletion of the 5' exons of COL4A6 and of the common promoter of the COL4A5 and COL4A6 genes is not essential for the development of leiomyomatosis in patients with ATS, and that COL4A5_COL4A6 deletions extending into COL4A6 exon 3 may not result in ATS-DL.


Subject(s)
Collagen Type IV/genetics , Gene Deletion , Leiomyomatosis/genetics , Nephritis, Hereditary/genetics , Adult , Child , Child, Preschool , Exons , Female , Genotype , Humans , Leiomyomatosis/pathology , Male , Middle Aged , Nephritis, Hereditary/pathology , Pedigree , Young Adult
14.
Nucleic Acids Res ; 40(22): 11477-89, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23066103

ABSTRACT

Telomere position effect (TPE) is the influence of telomeres on subtelomeric epigenetic marks and gene expression. Previous studies suggested that TPE depends on genetic background. As these analyses were performed on different chromosomes, cell types and species, it remains unclear whether TPE represents a chromosome-rather than genetic background-specific regulation. We describe the development of a Linear Human Artificial Chromosome (L-HAC) as a new tool for telomere studies. The L-HAC was generated through the Cre-loxP-mediated addition of telomere ends to an existing circular HAC (C-HAC). As it can be transferred to genetically distinct cell lines and animal models the L-HAC enables the study of TPE in an unprecedented manner. The HAC was relocated to four telomerase-positive cell lines via microcell-mediated chromosome transfer and subsequently to mice via blastocyst injection of L-HAC(+)-ES-cells. We could show consistent genetic background-dependent adaptation of telomere length and telomere-associated de novo subtelomeric DNA methylation in mouse ES-R1 cells as well as in mice. Expression of the subtelomeric neomycin gene was inversely correlated with telomere length and subtelomeric methylation. We thus provide a new tool for functional telomere studies and provide strong evidence that telomere length, subtelomeric chromatin marks and expression of subtelomeric genes are genetic background dependent.


Subject(s)
Chromosomal Position Effects , Chromosomes, Artificial, Human , Telomere Homeostasis , Telomere/physiology , Animals , Cells, Cultured , Chromatin/metabolism , Cricetinae , DNA Methylation , Humans , Mice , Mice, Inbred BALB C
15.
Hum Genet ; 132(10): 1177-85, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23783460

ABSTRACT

Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A. Here, we report on overlapping microdeletions at Xq24 that do not include UBE2A or affect its expression, in patients with non-syndromic ID plus some additional features from three unrelated families. The smallest region of overlap, confirmed by junction sequencing, harbors two members of the mitochondrial solute carrier family 25, SLC25A5 and SLC25A43. However, identification of an intragenic microdeletion including SLC25A43 but not SLC25A5 in a healthy boy excluded a role for SLC25A43 in cognition. Therefore, our findings point to SLC25A5 as a novel gene for non-syndromic ID. This highly conserved gene is expressed ubiquitously with high levels in cortex and hippocampus, and a presumed role in mitochondrial exchange of ADP/ATP. Our data indicate that SLC25A5 is involved in memory formation or establishment, which could add mitochondrial processes to the wide array of pathways that regulate normal cognitive functions.


Subject(s)
Adenine Nucleotide Translocator 2/metabolism , Chromosome Deletion , Chromosomes, Human, X/genetics , Intellectual Disability/genetics , Mitochondria/metabolism , Adenine Nucleotide Translocator 2/genetics , Alu Elements , Base Sequence , Brain/metabolism , Brain/pathology , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Heterozygote , Humans , Infant , Intellectual Disability/pathology , Male , Mitochondria/genetics , Molecular Sequence Data , Pedigree , X Chromosome Inactivation
16.
Cancers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37345038

ABSTRACT

Lung cancer remains the leading cause of cancer death worldwide, with the majority of cases diagnosed in an advanced stage. Early-stage disease non-small cell lung cancer (NSCLC) has a better outcome, nevertheless the 5-year survival rates drop from 60% for stage IIA to 36% for stage IIIA disease. Early detection and optimized perioperative systemic treatment are frontrunner strategies to reduce this burden. The rapid advancements in molecular diagnostics as well as the growing availability of targeted therapies call for the most efficient detection of actionable biomarkers. Liquid biopsies have already proven their added value in the management of advanced NSCLC but can also optimize patient care in early-stage NSCLC. In addition to having known diagnostic benefits of speed, accessibility, and enhanced biomarker detection compared to tissue biopsy, liquid biopsy could be implemented for screening, diagnostic, and prognostic purposes. Furthermore, liquid biopsy can optimize therapeutic management by overcoming the issue of tumor heterogeneity, monitoring tumor burden, and detecting minimal residual disease (MRD), i.e., the presence of tumor-specific ctDNA, post-operatively. The latter is strongly prognostic and is likely to become a guidance in the postsurgical management. In this review, we present the current evidence on the clinical utility of liquid biopsy in early-stage lung cancer, discuss a selection of key trials, and suggest future applications.

17.
Virchows Arch ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37731064

ABSTRACT

In addition to morphologic analysis, molecular diagnostic work up of Spitz tumours is often of great value for their accurate diagnosis/classification. Nowadays, next-generation sequencing (NGS) is the predominant screening method in molecular diagnostics. Up to 80% of these melanocytic neoplasms comprise gene fusions as genetic anomalies for which the driver codes for a protein harbouring a kinase domain. However, because of the variety of fusion partners the use of PCR-based targeted enrichment NGS methods is not recommended. We describe a series of four Spitz tumour samples in which distinct gene fusions were detected by hybridisation-based capture NGS (TPM3::ALK, LIMA1::ROS1, LRRFIP2::ROS1 and MYO5A::RET). Two of these fusions are not previously described. All 4 fusions were confirmed by reverse transcription-PCR. These findings demonstrate the need for molecular analysis that can detect unknown fusions in Spitz neoplasms for optimal diagnosis.

18.
Am J Hum Genet ; 85(6): 809-22, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20004760

ABSTRACT

We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.


Subject(s)
Chromosomes, Human, X , Gene Dosage , Intellectual Disability/genetics , Recombination, Genetic , Adult , Brain/metabolism , Child , Child, Preschool , Chromosome Aberrations , Chromosome Mapping , Female , Humans , Male , Models, Genetic , Nucleic Acid Hybridization , Pedigree , Phenotype
19.
Prenat Diagn ; 32(1): 39-44, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22052745

ABSTRACT

OBJECTIVE: Prenatal tracheal occlusion (TO) promotes lung growth and is applied clinically in fetuses with severe congenital diaphragmatic hernia. Limited data are available regarding the effect of duration of TO on lung development. Our objective was to evaluate the effects of long (2 and 2.5 days) versus short (1 day) TO on lung development in rats with nitrofen-induced diaphragmatic hernia. METHOD: Nitrofen was administered on embryonic day (ED) 9 and fetal TO performed either on ED18.5, 19 or 20 (term = 22 days). Sham-operated and untouched littermates served as controls. On ED21, lungs were harvested and only fetuses with a left-sided diaphragmatic defect were included in further analyses. RESULTS: Lung-body-weight ratio incrementally increased with the duration of TO. Increased proliferation following long TO was confirmed by immunohistochemistry and qRT-PCR for the proliferation marker Ki-67. Irrespective of duration, TO induced more complex airway architecture. Medial wall thickness of pulmonary arteries was thinner after long rather than short TO. CONCLUSION: In the nitrofen rat model of congenital diaphragmatic hernia, a longer period of TO leads to enhanced lung growth and less muscularized pulmonary arteries.


Subject(s)
Fetal Diseases/surgery , Hernias, Diaphragmatic, Congenital , Lung/embryology , Trachea/surgery , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Female , Fetus/abnormalities , Fetus/surgery , Gestational Age , Herbicides/toxicity , Hernia, Diaphragmatic/chemically induced , Hernia, Diaphragmatic/pathology , Hernia, Diaphragmatic/surgery , Lung/drug effects , Lung/pathology , Organ Size , Phenyl Ethers/toxicity , Pregnancy , Rats , Rats, Wistar , Time Factors
20.
Cancers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35626061

ABSTRACT

The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort.

SELECTION OF CITATIONS
SEARCH DETAIL