Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Nature ; 574(7777): 228-232, 2019 10.
Article in English | MEDLINE | ID: mdl-31597972

ABSTRACT

Microfluidic systems can deliver portable point-of-care diagnostics without the need for external equipment or specialist operators, by integrating all reagents and manipulations required for a particular assay in one device1. A key approach is to deposit picogram quantities of dried reagents in microchannels with micrometre precision using specialized inkjet plotters2-5. This means that reagents can be stored for long periods of time and reconstituted spontaneously when adding a liquid sample. But it is challenging to carry out complex operations using multiple reagents, because shear flow enhances their dispersion and they tend to accumulate at moving liquid fronts, resulting in poor spatiotemporal control over the concentration profile of the reconstituted reagents6. One solution is to limit the rate of release of reagents into the liquid7-10. However, this requires the fine-tuning of different reagents, conditions and targeted operations, and cannot readily produce the complex, time-dependent multireagent concentration pulses required for sophisticated on-chip assays. Here we report and characterize a capillary flow phenomenon that we term self-coalescence, which is seen when a confined liquid with a stretched air-liquid interface is forced to 'zip' back onto itself in a microfluidic channel, thereby allowing reagent reconstitution with minimal dispersion. We provide a comprehensive framework that captures the physical underpinning of this effect. We also fabricate scalable, compact and passive microfluidic structures-'self-coalescence modules', or SCMs-that exploit and control this phenomenon in order to dissolve dried reagent deposits in aqueous solutions with precise spatiotemporal control. We show that SCMs can reconstitute multiple reagents so that they either undergo local reactions or are sequentially delivered in a flow of liquid. SCMs are easily fabricated in different materials, readily configured to enable different reagent manipulations, and readily combined with other microfluidic technologies, so should prove useful for assays, diagnostics, high-throughput screening and other technologies requiring efficient preparation and manipulation of small volumes of complex solutions.


Subject(s)
Indicators and Reagents/analysis , Microfluidics/methods , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Diagnostic Tests, Routine , Enzyme Assays/instrumentation , Enzyme Assays/methods , Fluorometry , Glucosephosphate Dehydrogenase/analysis , Glucosephosphate Dehydrogenase/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/isolation & purification , Human papillomavirus 18/genetics , Human papillomavirus 18/isolation & purification , Humans , Microfluidics/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33376203

ABSTRACT

An increasing number of applications in biology, chemistry, and material sciences require fluid manipulation beyond what is possible with current automated pipette handlers, such as gradient generation, interface reactions, reagent streaming, and reconfigurability. In this article, we introduce the pixelated chemical display (PCD), a scalable strategy for highly parallel, reconfigurable liquid handling on open surfaces. Microfluidic "pixels" are created when a fluid stream injected above a surface is confined by neighboring identical fluid streams, forming a repeatable flow unit that can be used to tesselate a surface. PCDs generating up to 144 pixels are fabricated and used to project "chemical moving pictures" made of several reagents over both immersed and dry surfaces, without any physical barrier or wall. This work distinguishes itself from previous work in open-space microfluidics by presenting a device architecture where the number of confinement areas can be scaled to any size. Furthermore, it challenges the open-space tenet that the aspiration rate must be higher than the injection rate for reagents to be confined. Overall, this article sets the foundation for massively parallel surface processing using continuous flow streams and showcases possibilities in both wet and dry surface patterning and roll-to-roll processes.

3.
Small ; 18(16): e2105939, 2022 04.
Article in English | MEDLINE | ID: mdl-35307960

ABSTRACT

The positioning and manipulation of large numbers of reagents in small aliquots are paramount to many fields in chemistry and the life sciences, such as combinatorial screening, enzyme activity assays, and point-of-care testing. Here, a capillary microfluidic architecture based on self-coalescence modules capable of storing thousands of dried reagent spots per square centimeter is reported, which can all be reconstituted independently without dispersion using a single pipetting step and ≤5 µL of a solution. A simple diffusion-based mathematical model is also provided to guide the spotting of reagents in this microfluidic architecture at the experimental design stage to enable either compartmentalization, mixing, or the generation of complex multi-reagent chemical patterns. Results demonstrate the formation of chemical patterns with high accuracy and versatility, and simple methods for integrating reagents and imaging the resulting chemical patterns.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Diffusion , Enzyme Assays , Indicators and Reagents , Microfluidics/methods
4.
Opt Express ; 27(20): 27663-27681, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684530

ABSTRACT

A hollow-core Bragg waveguide-based resonant fluidic sensor operating in the terahertz frequency band is studied. A fused deposition modeling 3D printing technique with a Polylactic Acid filament is employed to fabricate the sensor where the liquid analyte is flowing in the microfluidic channel integrated into the waveguide cladding. The fluidic channel supports a resonant defect state which is probed spectrally using the core-guided mode of the Bragg waveguide. Continuous-wave terahertz spectroscopy is used to characterize the fluidic sensor. The measured signal amplitude shows a dip in the transmission spectrum, while the measured phase shows a sharp change in the vicinity of the anticrossing frequency whose spectral position depends strongly on the real part of the analyte refractive index. The sensor spectral response is further optimized by tailoring the waveguide length and position of the defect layer. Consistent with the results of numerical modeling, the measured sensor sensitivity is ~110 GHz/RIU, while the sensor resolution ~0.0045 RIU is limited by the parasitic standing waves in the spectrometer cavity. We believe that the proposed fluidic sensor opens new opportunities in applied chemical and biological sensing as it offers a non-contact measurement technique for monitoring refractive index changes in flowing liquids.

5.
Analyst ; 143(16): 3829-3840, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29999046

ABSTRACT

Tumor spheroids represent a realistic 3D in vitro cancer model because they provide a missing link between monolayer cell culture and live tissues. While microfluidic chips can easily form and assay thousands of spheroids simultaneously, few commercial instruments are available to analyze this massive amount of data. Available techniques to measure spheroid response to external stimuli, such as confocal imaging and flow cytometry, are either not appropriate for 3D cultures, or destructive. We designed a wide-field hyperspectral imaging system to analyze multiple spheroids trapped in a microfluidic chip in a single acquisition. The system and its fluorescence quantification algorithm were assessed using liquid phantoms mimicking spheroid optical properties. Spectral unmixing was tested on three overlapping spectral entities. Hyperspectral images of co-culture spheroids expressing two fluorophores were compared with confocal microscopy and spheroid growth was measured over time. The system can spectrally analyze multiple fluorescent markers simultaneously and allows multiple time-points assays, providing a fast and versatile solution for analyzing lab on a chip devices.


Subject(s)
Lab-On-A-Chip Devices , Optical Imaging , Spheroids, Cellular , Cell Culture Techniques , Cell Line, Tumor , Female , Humans
6.
Sensors (Basel) ; 17(10)2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28976942

ABSTRACT

We introduce here a microfluidic cell culture platform or spheroid culture chamber array (SCCA) that can synthesize, culture, and enable fluorescence imaging of 3D cell aggregates (typically spheroids) directly on-chip while specifying the flow of reagents in each chamber via the use of an array of passive magnetic valves. The SCCA valves demonstrated sufficient resistance to burst (above 100 mBar), including after receiving radiotherapy (RT) doses of up to 8 Gy combined with standard 37 °C incubation for up to 7 days, enabling the simultaneous synthesis of multiple spheroids from different cell lines on the same array. Our results suggest that SCCA would be an asset in drug discovery processes, seeking to identify combinatorial treatments.


Subject(s)
Microfluidics , Cell Culture Techniques , Cell Line, Tumor , Humans , Neoplasms , Spheroids, Cellular
7.
Lab Chip ; 24(8): 2335-2346, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38568477

ABSTRACT

We describe the first microfluidic device for in vitro testing of brachytherapy (BT), with applications in translational cancer research. Our PDMS-made BT-on-chip system allows highly precise manual insertion of clinical BT seeds, reliable dose calculation using standard clinically-used TG-43 formalism and easy culture of naturally hypoxic spheroids in less than 3 days, thereby increasing the translational potential of the device. As the BT-on-chip platform is designed to be versatile, we showcase three different gold-standard post-irradiation bioassays and recapitulate, for the first time on-chip, key clinical observations such as dose rate effect and hypoxia-induced radioresistance. Our results suggest that BT-on-chip can be used to safely and efficiently integrate BT and radiotherapy to translational research and drug development pipelines, without expensive equipment or complex workflows.


Subject(s)
Brachytherapy , Brachytherapy/methods , Radiotherapy Dosage , Biology
8.
Lab Chip ; 23(8): 1967-1980, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36884010

ABSTRACT

A growing number of microfluidic systems operate not through networks of microchannels but instead through using 2D flow fields. While the design rules for channel networks are already well-known and exposed in microfluidics textbooks, the knowledge underlying transport in 2D microfluidics remains scattered piecemeal and is not easily accessible to experimentalists and engineers. In this tutorial review, we formulate a unified framework for understanding, analyzing and designing 2D microfluidic technologies. We first show how a large number of seemingly different devices can all be modelled using the same concepts, namely flow and diffusion in a Hele-Shaw cell. We then expose a handful of mathematical tools, accessible to any engineer with undergraduate level mathematics knowledge, namely potential flow, superposition of charges, conformal transforms and basic convection-diffusion. We show how these tools can be combined to obtain a simple "recipe" that models almost any imaginable 2D microfluidic system. We end by pointing to more advanced topics beyond 2D microfluidics, namely interface problems and flow and diffusion in the third dimension. This forms the basis of a complete theory allowing for the design and operation of new microfluidic systems.

9.
Methods Mol Biol ; 2644: 435-447, 2023.
Article in English | MEDLINE | ID: mdl-37142939

ABSTRACT

High-throughput (HT) drug screening is in high demand for successful drug discovery and personalized medicine. Spheroids act as a promising preclinical model for HT drug screening, which may decrease drug failures in clinical trials. Numerous spheroid-forming technological platforms are currently under development, which include synchronous, jumbo-sized, hanging drop, rotary, and nonadherent surface spheroid growth. Initial cell seeding concentration and time of culture play a vital role for spheroids to mimic the extracellular microenvironment of natural tissue, especially for HT preclinical evaluation. Hence microfluidic platforms become a potential technology to provide a confined space for the oxygen and nutrient gradients within the tissues while controlling the cell count and spheroid size in an HT manner. We describe here a microfluidic platform capable of generating spheroids of multiple sizes in a controlled manner with a predefined cell concentration for HT drug screening. Ovarian cancer spheroids grown on this microfluidic platform were evaluated for viability using a confocal microscope and flow cytometer. In addition, screening of the HT chemotherapeutic drug carboplatin was carried out on-chip to evaluate the impact of spheroid size on drug toxicity. This chapter summarizes a detailed protocol on microfluidic platform fabrication for spheroid growth, on-chip multi-sized spheroid analysis, and chemotherapeutic drug screening.


Subject(s)
High-Throughput Screening Assays , Spheroids, Cellular , Female , Humans , High-Throughput Screening Assays/methods , Cell Line, Tumor , Microfluidics/methods , Drug Evaluation, Preclinical
10.
Cancers (Basel) ; 15(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36831403

ABSTRACT

Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.

11.
Methods Mol Biol ; 2543: 13-25, 2022.
Article in English | MEDLINE | ID: mdl-36087255

ABSTRACT

Microfluidic technology facilitates the generation of 3D spheroids from cancer cells, a more suitable model for preclinical therapeutic studies. This system opens the possibility to test many drugs combination at a low cost. Here we describe the use of microfluidic devices for cytotoxicity evaluation on cancer spheroids for the discovery of drugs that could be used in combination with radiotherapy. Device fabrication, preparation, and seeding are also covered. Cell death arising following treatment is detected and characterized according to spheroid size, colony formation assays, and flow cytometry analysis of apoptotic marker annexin V.


Subject(s)
Lab-On-A-Chip Devices , Neoplasms , Cell Culture Techniques , Cell Death , Humans , Spheroids, Cellular
12.
Lab Chip ; 22(11): 2065-2079, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35477748

ABSTRACT

The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.


Subject(s)
Microfluidics , Radiation Oncology , Drug Discovery/methods , Humans , Lab-On-A-Chip Devices , Precision Medicine
13.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439199

ABSTRACT

Hypoxia is a key characteristic of the tumor microenvironment, too rarely considered during drug development due to the lack of a user-friendly method to culture naturally hypoxic 3D tumor models. In this study, we used soft lithography to engineer a microfluidic platform allowing the culture of up to 240 naturally hypoxic tumor spheroids within an 80 mm by 82.5 mm chip. These jumbo spheroids on a chip are the largest to date (>750 µm), and express gold-standard hypoxic protein CAIX at their core only, a feature absent from smaller spheroids of the same cell lines. Using histopathology, we investigated response to combined radiotherapy (RT) and hypoxic prodrug Tirapazamine (TPZ) on our jumbo spheroids produced using two sarcoma cell lines (STS117 and SK-LMS-1). Our results demonstrate that TPZ preferentially targets the hypoxic core (STS117: p = 0.0009; SK-LMS-1: p = 0.0038), but the spheroids' hypoxic core harbored as much DNA damage 24 h after irradiation as normoxic spheroid cells. These results validate our microfluidic device and jumbo spheroids as potent fundamental and pre-clinical tools for the study of hypoxia and its effects on treatment response.

14.
Lab Chip ; 21(18): 3573-3582, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34341817

ABSTRACT

Rapid tests for glucose-6-phosphate dehydrogenase (G6PD) are extremely important for determining G6PD deficiency, a widespread metabolic disorder which triggers hemolytic anemia in response to primaquine and tafenoquine medication, the most effective drugs for the radical cure of malaria caused by Plasmodium parasites. Current point-of-care diagnostic devices for G6PD are either qualitative, do not normalize G6PD activity to the hemoglobin concentration, or are very expensive. In this work we developed a capillary-driven microfluidic chip to perform a quantitative G6PD test and a hemoglobin measurement within 2 minutes and using less than 2 µL of sample. We used a powerful microfluidic module to integrate and resuspend locally the reagents needed for the G6PD assay and controls. We also developed a theoretical model that successfully predicts the enzymatic reactions on-chip, guides on-chip reagent spotting and allows efficient integration of multiple assays in miniaturized formats with only a few nanograms of reagents.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase , Hemoglobins , Microfluidics , Primaquine
15.
Radiother Oncol ; 157: 175-181, 2021 04.
Article in English | MEDLINE | ID: mdl-33516789

ABSTRACT

PURPOSE: Radioresistance, tumor microenvironment, and normal tissue toxicity from radiation limit the efficacy of radiotherapy in treating cancers. These challenges can be tackled by the discovery of new radiosensitizing and radioprotecting agents aimed at increasing the therapeutic efficacy of radiotherapy. The goal of this work was to develop a miniaturized microfluidic platform for the discovery of drugs that could be used in combination with radiotherapy. The microfluidic system will allow the toxicity testing of cancer spheroids to different combinations of radiotherapy and molecular agents. MATERIALS AND METHODS: An orthovoltage-based technique was used to expose the devices to multiple X-ray radiation doses simultaneously. Radiation dose-dependent DNA double-strand breaks in soft tissue sarcoma (STS) spheroids were quantified using comet assays. Analysis of proliferative death using clonogenic assays was also performed, and synergy between treatments with Talazoparib, Pazopanib, AZD7762, and radiotherapy was quantified using dedicated statistical tests. RESULTS: The developed microfluidic system with simple magnetic valves was capable of growing 336 homogeneous STS spheroids. The irradiation of the microfluidic system with an orthovoltage-based technique enabled the screening of sixteen drug-radiotherapy combinations with minimal reagent consumption. Using this framework, we predicted a therapeutic synergy between a novel anticancer drug Talazoparib and radiotherapy for STS. No synergy was found between RT and either Pazopanib or AZD7762, as the combinations were found to be additive. CONCLUSION: This methodology lays the basis for the systemic search for molecular agent/radiotherapy synergies among preexisting pharmaceutical compounds libraries, in the hope to identify failed drug candidates in monotherapy that, in the presence of radiotherapy, would make it through clinical trials.


Subject(s)
Antineoplastic Agents , Sarcoma , Soft Tissue Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Sarcoma/drug therapy , Sarcoma/radiotherapy , Spheroids, Cellular , Tumor Microenvironment , X-Rays
16.
Cancers (Basel) ; 13(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34439362

ABSTRACT

Predicting patient responses to anticancer drugs is a major challenge both at the drug development stage and during cancer treatment. Tumor explant culture platforms (TECPs) preserve the native tissue architecture and are well-suited for drug response assays. However, tissue longevity in these models is relatively low. Several methodologies have been developed to address this issue, although no study has compared their efficacy in a controlled fashion. We investigated the effect of two variables in TECPs, specifically, the tissue size and culture vessel on tissue survival using micro-dissected tumor tissue (MDT) and tissue slices which were cultured in microfluidic chips and plastic well plates. Tumor models were produced from ovarian and prostate cancer cell line xenografts and were matched in terms of the specimen, total volume of tissue, and respective volume of medium in each culture system. We examined morphology, viability, and hypoxia in the various tumor models. Our observations suggest that the viability and proliferative capacity of MDTs were not affected during the time course of the experiments. In contrast, tissue slices had reduced proliferation and showed increased cell death and hypoxia under both culture conditions. Tissue slices cultured in microfluidic devices had a lower degree of hypoxia compared to those in 96-well plates. Globally, our results show that tissue slices have lower survival rates compared to MDTs due to inherent diffusion limitations, and that microfluidic devices may decrease hypoxia in tumor models.

17.
PLoS One ; 15(12): e0244549, 2020.
Article in English | MEDLINE | ID: mdl-33382759

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America, underscoring the need for the development of new therapeutic strategies for the management of this disease. Although many drugs are pre-clinically tested every year, only a few are selected to be evaluated in clinical trials, and only a small number of these are successfully incorporated into standard care. Inaccuracies with the initial in vitro drug testing may be responsible for some of these failures. Drug testing is often performed using 2D monolayer cultures or 3D spheroid models. Here, we investigate the impact that these different in vitro models have on the carboplatin response of four EOC cell lines, and in particular how different 3D models (polydimethylsiloxane-based microfluidic chips and ultra low attachment plates) influence drug sensitivity within the same cell line. Our results show that carboplatin responses were observed in both the 3D spheroid models tested using apoptosis/cell death markers by flow cytometry. Contrary to previously reported observations, these were not associated with a significant decrease in spheroid size. For the majority of the EOC cell lines (3 out of 4) a similar carboplatin response was observed when comparing both spheroid methods. Interestingly, two cell lines classified as resistant to carboplatin in 2D cultures became sensitive in the 3D models, and one sensitive cell line in 2D culture showed resistance in 3D spheroids. Our results highlight the challenges of choosing the appropriate pre-clinical models for drug testing.


Subject(s)
Carboplatin/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Cell Culture Techniques/instrumentation , Ovarian Neoplasms/drug therapy , Spheroids, Cellular/cytology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Lab-On-A-Chip Devices , Models, Biological , Spheroids, Cellular/drug effects
18.
Nat Commun ; 10(1): 1781, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992450

ABSTRACT

Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for "open-space" biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic multipole is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the complete solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models are validated experimentally with a library of 3D printed devices and found in excellent agreement. Following a theory-guided design approach, we further ideate and fabricate two classes of spatiotemporally reconfigurable multipolar devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space microfluidic multipoles.

19.
Sci Rep ; 9(1): 2214, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778138

ABSTRACT

Radiotherapy (RT) and chemotherapy (CT) are the major therapeutics to treat cancer patients. Conventional in vitro 2D models are insufficient to study the combined effects of RT and CT towards optimized dose selection or drug screening. Soft-tissue sarcomas (STS) are rare cancers with profound social impacts as they affect patients of all ages. We developed a microfluidic device to form and culture STS spheroids to study the combined cytotoxicities of RT and CT. Uniformly-sized spheroids of two different cell lines, STS 93 and STS 117, were formed in the device. RT doses of 0.5 Gy, 2 Gy, and 8 Gy were used in combination with CT, doxorubicin at 2 µM and 20 µM. The spheroids culture chambers within the device were arranged in a 3 × 5 matrix form. The device was made "peelable", which enabled us to collect spheroids from each treatment condition separately. Collected spheroids were dissociated into single cells and evaluated using flow cytometry and clonogenic assays. Through this workflow, we observed that STS 93 spheroids treated with doxorubicin die through apoptosis, whereas RT induced death through other pathways. Spheroids from the p53 mutant STS 117 cell line were more resistant to RT and doxorubicin. The developed device could be used for the discovery of new drugs and RT synergies.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Death/radiation effects , Flow Cytometry , Lab-On-A-Chip Devices , Radiation, Ionizing , Tumor Stem Cell Assay , Cell Line, Tumor , Flow Cytometry/methods , Humans , Radiation Dosage , Sarcoma , Soft Tissue Neoplasms , Spheroids, Cellular , Tumor Cells, Cultured
20.
Lab Chip ; 19(4): 693-705, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30671574

ABSTRACT

There is an urgent need and strong clinical and pharmaceutical interest in developing assays that allow for the direct testing of therapeutic agents on primary tissues. Current technologies fail to provide the required sample longevity, throughput, and integration with standard clinically proven assays to make the approach viable. Here we report a microfluidic micro-histological platform that enables ex vivo culture of a large array of prostate and ovarian cancer micro-dissected tissue (MDT) followed by direct on-chip fixation and paraffination, a process we term paraffin-embedding lithography (PEL). The result is a high density MDT-Micro Array (MDTMA) compatible with standard clinical histopathology that can be used to analyse ex vivo tumor response or resistance to therapeutic agents. The cellular morphology and tissue architecture are preserved in MDTs throughout the 15 day culture period. We also demonstrate how this methodology can be used to study molecular pathways involved in cancer by performing in-depth characterization of biological and pharmacological mechanisms such as p65 nuclear translocation via TNF stimuli, and to predict the treatment outcome in the clinic via MDT response to taxane-based therapies.


Subject(s)
Microfluidic Analytical Techniques , Ovarian Neoplasms/diagnosis , Paraffin Embedding , Prostatic Neoplasms/diagnosis , Animals , Antineoplastic Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Cell Proliferation/drug effects , Equipment Design , Female , Humans , Male , Mice , Mice, Inbred Strains , Microfluidic Analytical Techniques/instrumentation , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/drug therapy , Ovarian Neoplasms/drug therapy , Paraffin Embedding/instrumentation , Prognosis , Prostatic Neoplasms/drug therapy , Taxoids/pharmacology , Treatment Outcome , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL