Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Pathol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885924

ABSTRACT

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. Previously reported, TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. The addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering the with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced IKK-α activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unravel novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. Our data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.

2.
BMC Biotechnol ; 23(1): 12, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127673

ABSTRACT

BACKGROUND: Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI. RESULTS: The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice. CONCLUSIONS: To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.


Subject(s)
Erythropoietin , Receptors, Erythropoietin , Mice , Animals , Receptors, Erythropoietin/metabolism , Erythropoietin/metabolism , Schwann Cells/metabolism , Signal Transduction , Mice, Knockout , Gastrointestinal Motility
3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982188

ABSTRACT

The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted ɑ-aminocyclobutanones from an ɑ-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus antiviral targets. Several of these analogs were initially identified as in silico hits against SARS-CoV-2 nonstructural protein 13 (Nsp13) helicase through molecular docking and dynamics simulations. Antiviral activity of the original hits as well as ɑ-aminocyclobutanone analogs that were predicted to bind more tightly to SARS-CoV-2 Nsp13 helicase are reported. We now report cyclobutanone derivatives that exhibit anti-SARS-CoV-2 activity. Furthermore, the Nsp13 helicase enzyme has been the target of relatively few target-based drug discovery efforts, in part due to a very late release of a high-resolution structure accompanied by a limited understanding of its protein biochemistry. In general, antiviral agents initially efficacious against wild-type SARS-CoV-2 strains have lower activities against variants due to heavy viral loads and greater turnover rates, but the inhibitors we are reporting have higher activities against the later variants than the wild-type (10-20X). We speculate this could be due to Nsp13 helicase being a critical bottleneck in faster replication rates of the new variants, so targeting this enzyme affects these variants to an even greater extent. This work calls attention to cyclobutanones as a useful medicinal chemistry scaffold, and the need for additional focus on the discovery of Nsp13 helicase inhibitors to combat the aggressive and immune-evading variants of concern (VOCs).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA Helicases/metabolism , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , DNA Helicases/metabolism
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108313

ABSTRACT

We have previously shown computationally that Mycolactone (MLN), a toxin produced by Mycobacterium ulcerans, strongly binds to Munc18b and other proteins, presumably blocking degranulation and exocytosis of blood platelets and mast cells. We investigated the effect of MLN on endocytosis using similar approaches, and it bound strongly to the N-terminal of the clathrin protein and a novel SARS-CoV-2 fusion protein. Experimentally, we found 100% inhibition up to 60 nM and 84% average inhibition at 30 nM in SARS-CoV-2 live viral assays. MLN was also 10× more potent than remdesivir and molnupiravir. MLN's toxicity against human alveolar cell line A549, immortalized human fetal renal cell line HEK293, and human hepatoma cell line Huh7.1 were 17.12%, 40.30%, and 36.25%, respectively. The cytotoxicity IC50 breakpoint ratio versus anti-SARS-CoV-2 activity was more than 65-fold. The IC50 values against the alpha, delta, and Omicron variants were all below 0.020 µM, and 134.6 nM of MLN had 100% inhibition in an entry and spread assays. MLN is eclectic in its actions through its binding to Sec61, AT2R, and the novel fusion protein, making it a good drug candidate for treating and preventing COVID-19 and other similarly transmitted enveloped viruses and pathogens.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , HEK293 Cells
5.
Int J Mol Sci ; 24(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37108137

ABSTRACT

New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.


Subject(s)
Boron Neutron Capture Therapy , Glioma , Humans , Boron Neutron Capture Therapy/methods , Ligands , Virus Internalization , Boron Compounds/pharmacology
6.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677538

ABSTRACT

Broadly neutralizing antibodies (bNAbs) are potent in neutralizing a wide range of HIV strains. VRC01 is a CD4-binding-site (CD4-bs) class of bNAbs that binds to the conserved CD4-binding region of HIV-1 envelope (env) protein. Natural products that mimic VRC01 bNAbs by interacting with the conserved CD4-binding regions may serve as a new generation of HIV-1 entry inhibitors by being broadly reactive and potently neutralizing. This study aimed to identify compounds that mimic VRC01 by interacting with the CD4-bs of HIV-1 gp120 and thereby inhibiting viral entry into target cells. Libraries of purchasable natural products were virtually screened against clade A/E recombinant 93TH057 (PDB: 3NGB) and clade B (PDB ID: 3J70) HIV-1 env protein. Protein-ligand interaction profiling from molecular docking and dynamics simulations showed that the compounds had intermolecular hydrogen and hydrophobic interactions with conserved amino acid residues on the CD4-binding site of recombinant clade A/E and clade B HIV-1 gp120. Four potential lead compounds, NP-005114, NP-008297, NP-007422, and NP-007382, were used for cell-based antiviral infectivity inhibition assay using clade B (HXB2) env pseudotype virus (PV). The four compounds inhibited the entry of HIV HXB2 pseudotype viruses into target cells at 50% inhibitory concentrations (IC50) of 15.2 µM (9.7 µg/mL), 10.1 µM (7.5 µg/mL), 16.2 µM (12.7 µg/mL), and 21.6 µM (12.9 µg/mL), respectively. The interaction of these compounds with critical residues of the CD4-binding site of more than one clade of HIV gp120 and inhibition of HIV-1 entry into the target cell demonstrate the possibility of a new class of HIV entry inhibitors.


Subject(s)
Biological Products , Broadly Neutralizing Antibodies , HIV-1 , Humans , CD4 Antigens/metabolism , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections , HIV-1/drug effects , Molecular Docking Simulation , Biological Products/pharmacology
7.
Med Res Rev ; 42(1): 56-82, 2022 01.
Article in English | MEDLINE | ID: mdl-33851452

ABSTRACT

Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Animals , Calcium/metabolism , Calcium/pharmacology , Homeostasis , Humans
8.
J Cell Biochem ; 123(3): 601-619, 2022 03.
Article in English | MEDLINE | ID: mdl-34997606

ABSTRACT

After more than a year of the COVID-19 pandemic, SARS-CoV-2 infection rates with newer variants continue to devastate much of the world. Global healthcare systems are overwhelmed with high positive patient numbers. Silent hypoxia accompanied by rapid deterioration and some cases with septic shock is responsible for COVID-19 mortality in many hospitalized patients. There is an urgent need to further understand the relationships and interplay with human host components during pathogenesis and immune evasion strategies. Currently, acquired immunity through vaccination or prior infection usually provides sufficient protection against the emerging variants of SARS-CoV-2 except Omicron variant requiring recent booster. New strains have shown higher viral loads and greater transmissibility with more severe disease presentations. Notably, COVID-19 has a peculiar prognosis in severe patients with iron dysregulation and hypoxia which is still poorly understood. Studies have shown abnormally low serum iron levels in severe infection but a high iron overload in lung fibrotic tissue. Data from our in-silico structural analysis of the spike protein sequence along with host proteolysis processing suggests that the viral spike protein fragment mimics Hepcidin and is resistant to the major human proteases. This functional spike-derived peptide dubbed "Covidin" thus may be intricately involved with host ferroportin binding and internalization leading to dysregulated host iron metabolism. Here, we propose the possible role of this potentially allogenic mimetic hormone corresponding to severe COVID-19 immunopathology and illustrate that this molecular mimicry is responsible for a major pathway associated with severe disease status. Furthermore, through 3D molecular modeling and docking followed by MD simulation validation, we have unraveled the likely role of Covidin in iron dysregulation in COVID-19 patients. Our meta-analysis suggests the Hepcidin mimetic mechanism is highly conserved among its host range as well as among all new variants to date including Omicron. Extensive analysis of current mutations revealed that new variants are becoming alarmingly more resistant to selective human proteases associated with host defense.


Subject(s)
COVID-19 , Humans , Iron , Pandemics , SARS-CoV-2
9.
Methods ; 195: 57-71, 2021 11.
Article in English | MEDLINE | ID: mdl-33453392

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.


Subject(s)
Antiviral Agents/administration & dosage , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Delivery Systems/standards , Indoles/administration & dosage , Maleimides/administration & dosage , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Drug Repositioning/standards , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Indoles/chemistry , Indoles/metabolism , Maleimides/chemistry , Maleimides/metabolism , Molecular Docking Simulation/methods , Molecular Docking Simulation/standards , Protein Structure, Secondary , Reproducibility of Results , SARS-CoV-2/chemistry
10.
J Cell Physiol ; 236(2): 1131-1147, 2021 02.
Article in English | MEDLINE | ID: mdl-32643158

ABSTRACT

Since the outbreak of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in December 2019 in China, there has been an upsurge in the number of deaths and infected individuals throughout the world, thereby leading to the World Health Organization declaration of a pandemic. Since no specific therapy is currently available for the same, the present study was aimed to explore the SARS-CoV-2 genome for the identification of immunogenic regions using immunoinformatics approach. A series of computational tools were applied in a systematic way to identify the epitopes that could be utilized in vaccine development. The screened-out epitopes were passed through several immune filters, such as promiscuousity, conservancy, antigenicity, nonallergenicity, population coverage, nonhomologous to human proteins, and affinity with human leukocyte antigen alleles, to screen out the best possible ones. Further, a construct comprising 11 CD4, 12 CD8, 3 B cell, and 3 interferon-γ epitopes, along with an adjuvant ß-defensin, was designed in silico, resulting in the formation of a multiepitope vaccine. The in silico immune simulation and population coverage analysis of the vaccine sequence showed its capacity to elicit cellular, humoral, and innate immune cells and to cover up a worldwide population of more than 97%. Further, the interaction analysis of the vaccine construct with Toll-like receptor 3 (immune receptor) was carried out by docking and dynamics simulations, revealing high affinity, constancy, and pliability between the two. The overall findings suggest that the vaccine may be highly effective, and is therefore required to be tested in the lab settings to evaluate its efficacy.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Genome, Viral , Interferon-gamma/immunology , SARS-CoV-2/genetics , Antigens, Viral , COVID-19/prevention & control , Cloning, Molecular , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , Models, Biological , Models, Molecular , Molecular Dynamics Simulation , Phylogeny , Protein Conformation , Protein Processing, Post-Translational , Vaccines, Subunit/immunology , Viral Proteins/immunology
11.
Gastroenterology ; 159(4): 1375-1389, 2020 10.
Article in English | MEDLINE | ID: mdl-32569770

ABSTRACT

BACKGROUND & AIMS: Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS: We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS: Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS: Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.


Subject(s)
Colitis, Ulcerative/pathology , Interleukin-1beta/metabolism , MicroRNAs/metabolism , Occludin/metabolism , Tight Junctions/metabolism , Animals , Caco-2 Cells , Cell Culture Techniques , Colitis, Ulcerative/etiology , Colitis, Ulcerative/metabolism , Enterocytes , Humans , Intestinal Absorption/physiology , Male , Mice , Mice, Inbred C57BL , Occludin/genetics , Permeability , RNA, Messenger/metabolism , Up-Regulation
12.
Crit Rev Immunol ; 40(6): 485-496, 2020.
Article in English | MEDLINE | ID: mdl-33900693

ABSTRACT

In December 2019, outbreak of a novel coronavirus flared in Wuhan, the capital city of Hubei province, China. The identified pathogen was an enveloped RNA betacoronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak was declared a pandemic by the World Health Organization (WHO), because the continual spread of this deadly and highly infectious virus is a health emergency for all world nations. SARS-CoV-2 is associated with severe atypical pneumonia coronavirus disease-19. Typical symptoms of this disease include fever, malaise, cough, shortness of breath, and in severe cases, death. As the virus continues to invade host cells deep into alveoli, infection severity mostly depends on the undeterred immune response that is triggered by elevated levels of inflammation-inducing cytokines, called a cytokine storm. In this article, we provide a comprehensive review of the viral life cycle and immunological responses associated with the SARS-CoV-2 infection.


Subject(s)
COVID-19/etiology , Disease Susceptibility , Host-Pathogen Interactions/immunology , SARS-CoV-2/physiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Disease Susceptibility/immunology , Humans , Immune Evasion , Immunity, Cellular , Immunity, Innate , Severity of Illness Index
13.
Bioorg Med Chem ; 47: 116393, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34509862

ABSTRACT

The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of âˆ¼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Ethylamines/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Ethylamines/metabolism , Ethylamines/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Thermodynamics , Vero Cells
14.
Arch Orthop Trauma Surg ; 139(4): 507-517, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30656475

ABSTRACT

INTRODUCTION: The terrible triad injury of the elbow (TTIE) remains challenging to manage and has been associated with high complication rates and poor outcomes. There is a trend towards performing radial head replacement (REP) in preference to radial head reconstruction (REC) as arthroplasty provides early stability and may allow mobilisation sooner, potentially resulting in a better functional outcome. This systematic review compares the outcome of patients with TTIE treated with either REC or REP. MATERIALS AND METHODS: MEDLINE, Embase, and CINAHL were searched for studies published in English involving at least ten patients exclusively with a TTIE managed operatively, including both patients with either REC or REP. Data collection was in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis protocol. The outcomes of interest were Mayo Elbow Performance Score (MEPS) and range of motion (ROM). Post-operative complications were also compared. RESULTS: 9 studies involving 210 patients were included (98 REPs and 112 RECs). There was no statistically significant difference (p = 0.51) demonstrated between in the mean MEPS of the REP group (mean 88.6) and REC group (mean 88.5). Similarly, there was no statistically significant difference demonstrated between the REP and REC groups in terms of ROM. The risk of re-operation was high in both the REP (18.4%) and REC (17.9%) group. The overall complication rate of all patients included in the study was high (65%). CONCLUSIONS: Comparable results with good outcomes in terms of functional scores and ROM can be achieved with both REP and REC when treating TTIE, although the re-operation rate for both remains relatively high. Given there is no apparent clear advantage between the two treatment groups, we would suggest that REC should be performed when a satisfactory fixation can be achieved as the longevity of REP in young patients with a TTIE is currently uncertain.


Subject(s)
Elbow Injuries , Elbow , Orthopedic Procedures/methods , Plastic Surgery Procedures/methods , Elbow/surgery , Humans
15.
Indian J Crit Care Med ; 23(2): 89-94, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31086453

ABSTRACT

BACKGROUND: This preliminary randomized controlled study evaluated effect of thoracic epidural block (TEB) on progression of acute pancreatitis induced organ dysfunction/failure. MATERIALS AND METHODS: Patients with predicted severe acute pancreatitis, without contraindication to TEB were randomized to receive (group TE) or not receive a TEB (group NTE) (n = 16 each). For group TE, TEB was performed at T8-9 or T9-10 vertebral level, with infusion of ropivacaine (0.2%) along with fentanyl 2 µg/mL; in group NTE, intravenous morphine was used instead, both interventions titrated to NRS of <4. SOFA score was assessed daily till discharge from ICU, and aggregate SOFA calculated by summing worst scores for each of organ system during ICU stay as primary outcome measure. Other surrogate measures of patient outcome were recorded as secondary objectives. RESULTS: Aggregate SOFA score was statistically similar between both groups (group NTE: 3 [2 - 4]; group TE: 5 [2 - 6]) (P = 0.379); but there was trend of improvement in SOFA score in group TE versus a worsening in group NTE. Duration of hospital stay, and number of patients requiring mechanical ventilation were statistically similar; mortality was insignificantly lesser for group TE (12.5% versus 6.6%; p = 1.000). Fall in serum procalcitonin was significantly greater for group TE. CONCLUSION: Thoracic epidural was associated with insignificant clinical trend towards better organ functions and lesser mortality; along with significantly greater fall in serum procalcitonin. These are encouraging results that could guide future use of thoracic epidural in acute pancreatitis for its non-analgesic benefits. HOW TO CITE THIS ARTICLE: Tyagi A, Gupta YR et al. Effect of Segmental Thoracic Epidural Block on Pancreatitis Induced Organ Dysfunction: A Preliminary Study. Indian J of Crit Care Med 2019;23(2):89-94.

16.
Med Res Rev ; 38(5): 1511-1535, 2018 09.
Article in English | MEDLINE | ID: mdl-29372568

ABSTRACT

Over time, several exciting advances have been made in the treatment and prevention of malaria; however, this devastating disease continues to be a major global health problem and affects millions of people every year. Notably, the paucity of new efficient drug molecules and the inevitable drug resistance of the malaria parasite, Plasmodium falciparum, against frontline therapeutics are the foremost struggles facing malaria eradication initiatives. According to the malaria eradication agenda, the discovery of new chemical entities that can destroy the parasite at the liver stage, the asexual blood stage, the gametocyte stage, and the insect ookinete stage of the parasite life cycle (i.e., compounds exhibiting multistage activity) are in high demand, preferably with novel and multiple modes of action. Phenotypic screening of chemical libraries against the malaria parasite is certainly a crucial step toward overcoming these crises. In the last few years, various research groups, including industrial research laboratories, have performed large-scale phenotypic screenings that have identified a wealth of chemical entities active against multiple life stages of the malaria parasite. Vital scientific and technological developments have led to the discovery of multistage inhibitors of the malaria parasite; these compounds, considered highly valuable starting points for subsequent drug discovery and eradication of malaria, are reviewed.


Subject(s)
Antimalarials/therapeutic use , Disease Eradication , Life Cycle Stages , Malaria/drug therapy , Malaria/parasitology , Parasites/growth & development , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Chemoprevention , Humans , Life Cycle Stages/drug effects , Malaria/prevention & control , Parasites/drug effects
17.
J Antimicrob Chemother ; 69(11): 2935-41, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25074855

ABSTRACT

OBJECTIVES: To evaluate gidB alterations for possible impact on the cumulative mechanism underlying the acquisition of high-level streptomycin resistance in Mycobacterium tuberculosis. METHODS: Fifty-two isolates with high streptomycin resistance and 23 isolates with low streptomycin resistance were sequenced for mutational analysis in the rpsL, rrs and gidB region. As the gidB protein has a complex substrate and no activity assay has yet been formulated, mutants of interest were subjected to in silico modelling and were structurally mapped together with active-site amino acid residues for assessment of the relevance to activity of the mutations found. RESULTS: Eight novel sense mutations and four novel mis-sense mutations in gidB were identified. Findings showed that active-site morphology is not only greatly affected by mutants lying in close proximity to the active-site pocket, but also by other mutations altering secondary-structure motifs and having an overall effect on protein structure. CONCLUSIONS: We conclude that gidB mutations address many unanswered questions and explain the whole story behind phenotypic streptomycin-resistant strains exhibiting no mutation in rpsL or rrs. They also validate the hypothesis of sequential progression of resistance from low to high due to the existence of gidB alterations in the genetic background.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Streptomycin/pharmacology , Bacterial Proteins/chemistry , Drug Resistance, Bacterial/drug effects , Humans , Microbial Sensitivity Tests/methods , Mutation/genetics , Mycobacterium tuberculosis/drug effects , Protein Structure, Secondary
18.
Ecol Evol ; 14(7): e11696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966242

ABSTRACT

In this study, we report the assembly and annotation of the mitochondrial genome (mitogenome) of Acheta domesticus from breeding facility, a species commonly known as the house cricket. This species is considered to be an important edible cricket. The mitogenome was assembled using a reproducible protocol implemented on the Galaxy Europe Server, which involved uploading paired-end fastq reads for bioinformatic analysis. The resulting mitogenome is 15,784 base pairs in length and has a GC content of 29.05%. The nucleotide composition of this mitogenome is similar to that of other insect mitogenomes, with A, T, C, and G nucleotides comprising 39.2%, 31.7%, 19.6%, and 9.5% of the mitogenome, respectively. The gene organization of the A. domesticus mitogenome is identical to that of other cricket species. The mitogenome consists of 37 genes, including 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The congruence between PCA and Bayesian evolutionary tree analysis in clustering the divergent A. domesticus sequences highlights these genomes as candidates for further study to elucidate their distinct features and evolutionary history.

19.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328073

ABSTRACT

Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.

20.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
SELECTION OF CITATIONS
SEARCH DETAIL