Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2208144119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939690

ABSTRACT

Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.


Subject(s)
C-Reactive Protein , Complement Activation , Serum Amyloid P-Component , Binding Sites , C-Reactive Protein/chemistry , C-Reactive Protein/immunology , COVID-19/immunology , Cryoelectron Microscopy , Female , Humans , Immunity, Innate , Ligands , Protein Conformation, alpha-Helical , Protein Domains , Serum Amyloid P-Component/chemistry
2.
Proc Natl Acad Sci U S A ; 119(35): e2209729119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994647

ABSTRACT

Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.


Subject(s)
Aminoacyltransferases , Culicidae , Malaria , Protein Processing, Post-Translational , Sporozoites , Aminoacyltransferases/immunology , Animals , Culicidae/immunology , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Malaria/genetics , Malaria/immunology , Malaria/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protein Processing, Post-Translational/immunology , Protozoan Proteins/immunology , Sporozoites/immunology
3.
Cell Mol Life Sci ; 81(1): 8, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092995

ABSTRACT

Cystatin F, a cysteine peptidase inhibitor, is a potent modulator of NK cytotoxicity. By inhibiting granule-mediated cytotoxicity pathway, cystatin F induces formation of non-functional NK cell stage, called split-anergy. We show that N-glycosylation determines the localization and cellular function of cystatin F. Cystatin F mostly exhibited high-mannose glycosylation in U-937 cells, both high-mannose and complex glycosylation in NK-92 and primary NKs, and predominantly complex glycosylation in super-charged NKs. Manipulating N-glycosylation with kifunensine increased high-mannose glycosylation of cystatin F and lysosome localisation, which decreased cathepsin C activity and reduced NK cytotoxicity. Mannose-6-phosphate could significantly reduce the internalization of extracellular cystatin F. By comparing NK cells with different cytotoxic potentials, we found that high-mannose cystatin F was strongly associated with lysosomes and cathepsin C in NK-92 cell line. In contrast, in highly cytotoxic super-charged NKs, cystatin F with complex glycosylation was associated with the secretory pathway and less prone to inhibit cathepsin C. Modulating glycosylation to alter cystatin F localisation could increase the cytotoxicity of NK cells, thereby enhancing their therapeutic potential for treating cancer patients.


Subject(s)
Antineoplastic Agents , Cystatins , Humans , Glycosylation , Mannose , Cathepsin C/metabolism , Killer Cells, Natural/metabolism
4.
J Biol Chem ; 298(3): 101622, 2022 03.
Article in English | MEDLINE | ID: mdl-35065968

ABSTRACT

The type A glycan modification found in human pathogen Clostridioides difficile consists of a monosaccharide (GlcNAc) that is linked to an N-methylated threonine through a phosphodiester bond. This structure has previously been described on the flagellar protein flagellin C of several C. difficile strains and is important for bacterial motility. The study of post-translational modifications often relies on some type of enrichment strategy; however, a procedure for enrichment of this modification has not yet been demonstrated. In this study, we show that an approach that is commonly used in phosphoproteomics, Fe3+-immobilized metal affinity chromatography, also enriches for peptides with this unique post-translational modification. Using LC-MS/MS analyses of immobilized metal affinity chromatography-captured tryptic peptides, we observed not only type A-modified C. difficile flagellin peptides but also a variety of truncated/modified type A structures on these peptides. Using an elaborate set of mass spectrometry analyses, we demonstrate that one of these modifications consists of a type A structure containing a phosphonate (2-aminoethylphosphonate), a modification that is rarely observed and has hitherto not been described in C. difficile. In conclusion, we show that a common enrichment strategy results in reliable identification of peptides carrying a type A glycan modification, and that the results obtained can be used to advance models about its biosynthesis.


Subject(s)
Clostridioides difficile , Flagellin , Chromatography, Liquid , Clostridioides difficile/metabolism , Flagellin/metabolism , Glycosylation , Polysaccharides/chemistry , Protein C/metabolism , Tandem Mass Spectrometry
5.
Anal Chem ; 95(31): 11621-11631, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37495545

ABSTRACT

Proteases comprise the class of enzymes that catalyzes the hydrolysis of peptide bonds, thereby playing a pivotal role in many aspects of life. The amino acids surrounding the scissile bond determine the susceptibility toward protease-mediated hydrolysis. A detailed understanding of the cleavage specificity of a protease can lead to the identification of its endogenous substrates, while it is also essential for the design of inhibitors. Although many methods for protease activity and specificity profiling exist, none of these combine the advantages of combinatorial synthetic libraries, i.e., high diversity, equimolar concentration, custom design regarding peptide length, and randomization, with the sensitivity and detection power of mass spectrometry. Here, we developed such a method and applied it to study a group of bacterial metalloproteases that have the unique specificity to cleave between two prolines, i.e., Pro-Pro endopeptidases (PPEPs). We not only confirmed the prime-side specificity of PPEP-1 and PPEP-2, but also revealed some new unexpected peptide substrates. Moreover, we have characterized a new PPEP (PPEP-3) that has a prime-side specificity that is very different from that of the other two PPEPs. Importantly, the approach that we present in this study is generic and can be extended to investigate the specificity of other proteases.


Subject(s)
Endopeptidases , Peptide Library , Endopeptidases/chemistry , Peptides/chemistry , Peptide Hydrolases/metabolism , Tandem Mass Spectrometry , Substrate Specificity
6.
J Proteome Res ; 20(6): 3268-3277, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34027671

ABSTRACT

Mutations in the POMT1 gene, encoding a protein O-mannosyltransferase essential for α-dystroglycan (α-DG) glycosylation, are frequently observed in a group of rare congenital muscular dystrophies, collectively known as dystroglycanopathies. However, it is hitherto unclear whether the effects seen in affected patients can be fully ascribed to α-DG hypoglycosylation. To study this, here we used comparative mass spectrometry-based proteomics and immunofluorescence microscopy and investigated the changes in the retina of mice in which Pomt1 is specifically knocked out in photoreceptor cells. Our results demonstrate significant proteomic changes and associated structural alteration in photoreceptor cells of Pomt1 cKO mice. In addition to the effects related to impaired α-DG O-mannosylation, we observed morphological alterations in the outer segment that are associated with dysregulation of a relatively understudied POMT1 substrate (KIAA1549), BBSome proteins, and retinal stress markers. In conclusion, our study provides new hypotheses to explain the phenotypic changes that are observed in the retina of patients with dystroglycanopathies.


Subject(s)
Dystroglycans , Proteomics , Animals , Dystroglycans/genetics , Humans , Mice , Mutation , Photoreceptor Cells , Retina
7.
Sensors (Basel) ; 21(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833562

ABSTRACT

Current assays for Clostridioides difficile in nonhospital settings are outsourced and time-intensive, resulting in both delayed diagnosis and quarantining of infected individuals. We designed a more rapid point-of-care assay featuring a "turn-on" bioluminescent readout of a C. difficile-specific protease, PPEP-1. NanoLuc, a bright and stable luciferase, was "caged" with a PPEP-1-responsive peptide tail that inhibited luminescence. Upon proteolytic cleavage, the peptide was released and NanoLuc activity was restored, providing a visible readout. The bioluminescent sensor detected PPEP-1 concentrations as low as 10 nM. Sensor uncaging was achieved within minutes, and signal was captured using a digital camera. Importantly, the sensor was also functional at ambient temperature and compatible with fecal material, suggesting that it can be readily deployed in a variety of settings.


Subject(s)
Clostridioides difficile , Clostridioides , Biomarkers , Feces , Humans
8.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065225

ABSTRACT

Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.


Subject(s)
Ions/metabolism , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Onium Compounds/metabolism , Cell Line, Tumor , Glycopeptides/metabolism , Glycoproteins/metabolism , Glycosylation , HCT116 Cells , HT29 Cells , Humans , Proteomics/methods , Tandem Mass Spectrometry/methods
9.
Blood ; 131(1): 131-143, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29061569

ABSTRACT

Most patients with acute myeloid leukemia (AML) can only be cured when allogeneic hematopoietic stem-cell transplantation induces a graft-versus-leukemia immune response (GVL). Although the role of T cells and natural killer cells in tumor immunology has been established, less is known about the contribution of B cells. From B cells of high-risk patients with AML with potent and lasting GVL responses, we isolated monoclonal antibodies directed against antigens expressed on the cell surface of AML cells but not on normal hematopoietic and nonhematopoietic cells. A number of these donor-derived antibodies recognized the U5 snRNP200 complex, a component of the spliceosome that in normal cells is found in the cell. In AML however, the U5 snRNP200 complex is exposed on the cell membrane of leukemic blasts. U5 snRNP200 complex-specific antibodies induced death of AML cells in an Fc receptor-dependent way in the absence of cytotoxic leukocytes or complement. In an AML mouse model, treatment with U5 snRNP200 complex-specific antibodies led to significant tumor growth inhibition. Thus, donor-derived U5 snRNP200 complex-recognizing AML-specific antibodies may contribute to antitumor responses.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Apoptosis/immunology , Graft vs Leukemia Effect/immunology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Ribonucleoprotein, U5 Small Nuclear/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Animals , Combined Modality Therapy , Female , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Male , Mice, SCID , Middle Aged , Prognosis
10.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167483

ABSTRACT

Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.


Subject(s)
Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , E-Selectin/metabolism , Neural Cell Adhesion Molecule L1/physiology , Cell Adhesion/genetics , Colonic Neoplasms/genetics , Humans , Immunoprecipitation , Ligands , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Protein Binding/genetics , Transfection , Tumor Cells, Cultured
11.
Int J Mol Sci ; 21(15)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752259

ABSTRACT

Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.


Subject(s)
Colorectal Neoplasms/metabolism , Glycoproteins/metabolism , Lectins, C-Type/metabolism , Proteome/metabolism , Proteomics/methods , Blotting, Western , CDX2 Transcription Factor/metabolism , Chromatography, High Pressure Liquid , Colorectal Neoplasms/pathology , Glycosylation , HCT116 Cells , HT29 Cells , Humans , Polysaccharides/metabolism , Protein Binding , Tandem Mass Spectrometry
12.
J Proteome Res ; 18(3): 1125-1132, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30582698

ABSTRACT

C-type lectins are a diverse group of proteins involved in many human physiological and pathological processes. Most C-type lectins are glycan-binding proteins, some of which are pivotal for innate immune responses against pathogens. Other C-type lectins, such as the macrophage galactose-type lectin (MGL), have been shown to induce immunosuppressive responses upon the recognition of aberrant glycosylation on cancer cells. MGL is known to recognize terminal N-acetylgalactosamine (GalNAc), such as the Tn antigen, which is commonly found on malignant cells. Even though this glycan specificity of MGL is well described, there is a lack of understanding of the actual glycoproteins that bind MGL. We present a glycoproteomic workflow for the identification of MGL-binding proteins, which we applied to study MGL ligands on the human Jurkat leukemia cell line. In addition to the known MGL ligands and Tn antigen-carrying proteins CD43 and CD45 on these cells, we have identified a set of novel cell-surface ligands for MGL. Importantly, for several of these, O-glycosylation has hitherto not been described. Altogether, our data provide new insight into the identification and structure of novel MGL ligands that presumably act as modulatory molecules in cancer immune responses.


Subject(s)
Glycoproteins/genetics , Lectins, C-Type/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acetylgalactosamine/genetics , Acetylgalactosamine/metabolism , Antigens, Tumor-Associated, Carbohydrate/genetics , Antigens, Tumor-Associated, Carbohydrate/metabolism , Carrier Proteins/genetics , Carrier Proteins/immunology , Glycoproteins/immunology , Glycosylation , Humans , Immunity, Innate/genetics , Jurkat Cells , Lectins, C-Type/immunology , Leukocyte Common Antigens/genetics , Leukosialin/genetics , Ligands , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
13.
J Biol Chem ; 293(28): 11154-11165, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29794027

ABSTRACT

Pro-Pro endopeptidases (PPEPs) belong to a recently discovered family of proteases capable of hydrolyzing a Pro-Pro bond. The first member from the bacterial pathogen Clostridium difficile (PPEP-1) cleaves two C. difficile cell-surface proteins involved in adhesion, one of which is encoded by the gene adjacent to the ppep-1 gene. However, related PPEPs may exist in other bacteria and may shed light on substrate specificity in this enzyme family. Here, we report on the homolog of PPEP-1 in Paenibacillus alvei, which we denoted PPEP-2. We found that PPEP-2 is a secreted metalloprotease, which likewise cleaved a cell-surface protein encoded by an adjacent gene. However, the cleavage motif of PPEP-2, PLP↓PVP, is distinct from that of PPEP-1 (VNP↓PVP). As a result, an optimal substrate peptide for PPEP-2 was not cleaved by PPEP-1 and vice versa. To gain insight into the specificity mechanism of PPEP-2, we determined its crystal structure at 1.75 Å resolution and further confirmed the structure in solution using small-angle X-ray scattering (SAXS). We show that a four-amino-acid loop, which is distinct in PPEP-1 and -2 (GGST in PPEP-1 and SERV in PPEP-2), plays a crucial role in substrate specificity. A PPEP-2 variant, in which the four loop residues had been swapped for those from PPEP-1, displayed a shift in substrate specificity toward PPEP-1 substrates. Our results provide detailed insights into the PPEP-2 structure and the structural determinants of substrate specificity in this new family of PPEP proteases.


Subject(s)
Bacterial Proteins/metabolism , Dipeptides/metabolism , Endopeptidases/metabolism , Paenibacillus/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Crystallography, X-Ray , Dipeptides/chemistry , Endopeptidases/chemistry , Models, Molecular , Paenibacillus/growth & development , Protein Conformation , Sequence Homology , Substrate Specificity
14.
Mol Microbiol ; 105(5): 663-673, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28636257

ABSTRACT

In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram-positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase-mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro-Pro endopeptidase 1, PPEP-1). Specific emphasis will be on a model in which PPEP-1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c-di-GMP (3'-5' cyclic dimeric guanosine monophosphate).


Subject(s)
Cell Adhesion/physiology , Clostridioides difficile/metabolism , Cyclic GMP/analogs & derivatives , Endopeptidases/metabolism , Bacterial Proteins/metabolism , Biofilms , Cross Infection , Cyclic GMP/metabolism , Dipeptides , Gene Expression Regulation, Bacterial/genetics , Humans , Membrane Proteins/metabolism , Metalloproteases/metabolism , Peptidoglycan/metabolism
15.
J Biol Chem ; 291(25): 13286-300, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27076635

ABSTRACT

Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/metabolism , Cyclic AMP/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Clostridioides difficile/chemistry , Crystallography, X-Ray , Enterocolitis, Pseudomembranous/microbiology , Humans , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Structure, Tertiary
16.
Haematologica ; 102(3): 573-583, 2017 03.
Article in English | MEDLINE | ID: mdl-27909217

ABSTRACT

The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients.


Subject(s)
B-Lymphocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcriptional Activation , Alternative Splicing , Amino Acid Sequence , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Cycle/genetics , Cell Differentiation , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Disease Models, Animal , Forkhead Transcription Factors/chemistry , Humans , Immunologic Memory , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mutagenesis, Insertional , Plasma Cells/cytology , Plasma Cells/immunology , Plasma Cells/metabolism , Protein Isoforms , Repressor Proteins/chemistry
17.
Mol Cell Proteomics ; 14(5): 1373-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25759508

ABSTRACT

Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and a fundamental component of the immune system. IgG3 represents ∼8% of the total amount of IgG in human serum and stands out from the other IgG subclasses because of its elongated hinge region and enhanced effector functions. This study reports partial O-glycosylation of the IgG3 hinge region, observed with nanoLC-ESI-IT-MS(/MS) analysis after proteolytic digestion. The repeat regions within the IgG3 hinge were found to be in part O-glycosylated at the threonine in the triple repeat motif. Non-, mono- and disialylated core 1-type O-glycans were detected in various IgG3 samples, both poly- and monoclonal. NanoLC-ESI-IT-MS/MS with electron transfer dissociation fragmentation and CE-MS/MS with CID fragmentation were used to determine the site of IgG3 O-glycosylation. The O-glycosylation site was further confirmed by the recombinant production of mutant IgG3 in which potential O-glycosylation sites had been knocked out. For IgG3 samples from six donors we found similar O-glycan structures and site occupancies, whereas for the same samples the conserved N-glycosylation of the Fc CH2 domain showed considerable interindividual variation. The occupancy of each of the three O-glycosylation sites was found to be ∼10% in six serum-derived IgG3 samples and ∼13% in two monoclonal IgG3 allotypes.


Subject(s)
Immunoglobulin G/analysis , Peptides/analysis , Threonine/chemistry , Adult , Amino Acid Sequence , Carbohydrate Sequence , Female , Gene Expression , Glycosylation , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Male , Middle Aged , Molecular Sequence Data , Mutation , Proteolysis , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Threonine/metabolism , Trypsin/chemistry
18.
Anal Chem ; 88(11): 5849-56, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27119460

ABSTRACT

Over the last years, numerous strategies have been proposed to enhance both ionization efficiency and spray stability in electrospray ionization (ESI), in particular for nanospray applications. In nano-liquid chromatography-mass spectrometry (nano-LC-ESI-MS), a better ESI performance has been observed when a coaxial gas flow is added around the ESI emitter. Moreover, enrichment of the gas with an organic dopant has led to an improved desolvation and ionization efficiency with an overall enhanced sensitivity. In this study, the use of a dopant enriched nitrogen (DEN)-gas combined with sheathless capillary electrophoresis (CE)-ESI-MS was evaluated for glycopeptide analysis. Using acetonitrile as a dopant, an increased sensitivity was observed compared to conventional sheathless CE-ESI-MS. Up to 25-fold higher sensitivities for model glycopeptides were obtained, allowing for limits of detection unachieved by state-of-the-art nano-LC-ESI-MS. The effect of DEN-gas on the repeatability and intermediate precision was also investigated. When compared to previously reported nano-LC-ESI-MS measurements, similar values were found for CE-ESI-MS with DEN-gas. The enhanced repeatability fosters the use of DEN-gas sheathless CE-ESI-MS in protein glycosylation analysis, where precision is essential. The use of DEN-gas opens new avenues for highly sensitive sheathless CE-ESI-MS approaches in glycoproteomics research, by significantly improving sensitivity and precision.


Subject(s)
Glycopeptides/analysis , Nitrogen/chemistry , Chromatography, Liquid , Electrophoresis, Capillary , Spectrometry, Mass, Electrospray Ionization
19.
Anal Chem ; 88(11): 5996-6003, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27123572

ABSTRACT

The introduction of standardized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platforms in the medical microbiological practice has revolutionized the way microbial species identification is performed on a daily basis. To a large extent, this is due to the ease of operation. Acquired spectra are compared to profiles obtained from cultured colonies present in a reference spectra database. It is fast and reliable, and costs are low compared to previous diagnostic approaches. However, the low resolution and dynamic range of the MALDI-TOF profiles have shown limited applicability for the discrimination of different bacterial strains, as achieved with typing based on genetic markers. This is pivotal in cases where certain strains are associated with, e.g., virulence or antibiotic resistance. Ultrahigh resolution MALDI-FTICR MS allows the measurement of small proteins at isotopic resolution and can be used to analyze complex mixtures with increased dynamic range and higher precision than MALDI-TOF MS, while still generating results in a similar time frame. Here, we propose to use ultrahigh resolution 15T MALDI-Fourier transform ion cyclotron resonance (FTICR) MS to discriminate clinically relevant bacterial strains after species identification performed by MALDI-TOF MS. We used a collection of well characterized Pseudomonas aeruginosa strains, featuring distinct antibiotic resistance profiles, and isolates obtained during hospital outbreaks. Following cluster analysis based on amplification fragment length polymorphism (AFLP), these strains were grouped into three different clusters. The same clusters were obtained using protein profiles generated by MALDI-FTICR MS. Subsequent intact protein analysis by electrospray ionization (ESI)-collision-induced dissociation (CID)-FTICR MS was applied to identify protein isoforms that contribute to the separation of the different clusters, illustrating the additional advantage of this analytical platform.


Subject(s)
Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Amplified Fragment Length Polymorphism Analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Cluster Analysis , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics
20.
J Virol ; 89(18): 9427-39, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26136575

ABSTRACT

UNLABELLED: The polyomavirus tumor (T) antigens play crucial roles in viral replication, transcription, and cellular transformation. They are encoded by partially overlapping open reading frames (ORFs) located in the early region through alternative mRNA splicing. The T expression pattern of the trichodysplasia spinulosa-associated polyomavirus (TSPyV) has not been established yet, hampering further study of its pathogenic mechanisms and taxonomic relationship. Here, we characterized TSPyV T antigen expression in human cell lines transfected with the TSPyV early region. Sequencing of T antigen-encoded reverse transcription-PCR (RT-PCR) products revealed three splice donor and acceptor sites creating six mRNA splice products that potentially encode the antigens small T (ST), middle T (MT), large T (LT), tiny T, 21kT, and alternative T (ALTO). Except for 21kT, these splice products were also detected in skin of TSPyV-infected patients. At least three splice products were confirmed by Northern blotting, likely encoding LT, MT, ST, 21kT, and ALTO. Protein expression was demonstrated for LT, ALTO, and possibly MT, with LT detected in the nucleus and ALTO in the cytoplasm of transfected cells. Splice site and start codon mutations indicated that ALTO is encoded by the same splice product that encodes LT and uses internal start codons for initiation. The genuineness of ALTO was indicated by the identification of acetylated N-terminal ALTO peptides by mass spectrometry. Summarizing, TSPyV exhibits an expression pattern characterized by both MT and ALTO expression, combining features of rodent and human polyomaviruses. This unique expression pattern provides important leads for further study of polyomavirus-related disease and for an understanding of polyomavirus evolution. IMPORTANCE: The human trichodysplasia spinulosa-associated polyomavirus (TSPyV) is distinguished among polyomaviruses for combining productive infection with cell-transforming properties. In the research presented here, we further substantiate this unique position by indicating expression of both middle T antigen (MT) and alternative T antigen (ALTO) in TSPyV. So far, none of the human polyomaviruses was shown to express MT, which is considered the most important viral oncoprotein of rodent polyomaviruses. Coexpression of ALTO and MT, which involves a conserved, recently recognized overlapping ORF subject to positive selection, has not been observed before for any polyomavirus. As a result of our findings, this study provides valuable new insights into polyomavirus T gene use and expression. Obviously, these insights will be instrumental in further study and gaining an understanding of TSPyV pathogenicity. More importantly, however, they provide important leads with regard to the interrelationship, functionality, and evolution of polyomaviruses as a whole, indicating that TSPyV is a suitable model virus to study these entities further.


Subject(s)
Alternative Splicing/physiology , Antigens, Viral, Tumor/biosynthesis , Gene Expression Regulation, Viral/physiology , Polyomavirus/metabolism , Antigens, Viral, Tumor/genetics , HEK293 Cells , HeLa Cells , Humans , Polyomavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL