Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Glia ; 69(10): 2429-2446, 2021 10.
Article in English | MEDLINE | ID: mdl-34157170

ABSTRACT

Multiple signals are involved in the regulation of developmental myelination by Schwann cells and in the maintenance of a normal myelin homeostasis throughout adult life, preserving the integrity of the axons in the PNS. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination in the PNS. In addition, hyperactivation of these signaling pathways in Schwann cells leads to a late onset of various pathological changes in the sciatic nerves. However, it remains poorly understood whether these pathways function independently or sequentially or converge using a common mechanism to facilitate Schwann cell differentiation and myelin growth during development and in causing pathological changes in the adult animals. To address these questions, we analyzed multiple genetically modified mice using simultaneous loss- and constitutive gain-of-function approaches. We found that during development, the Mek/ERK1/2-MAPK pathway plays a primary role in Schwann cell differentiation, distinct from mTOR. However, during active myelination, ERK1/2 is dependent on mTOR signaling to drive the growth of the myelin sheath and regulate its thickness. Finally, our data suggest that peripheral nerve pathology during adulthood caused by hyperactivation of Mek/ERK1/2-MAPK or PI3K is likely to be independent or dependent on mTOR-signaling in different contexts. Thus, this study highlights the complexities in the roles played by two major intracellular signaling pathways in Schwann cells that affect their differentiation, myelination, and later PNS pathology and predicts that potential therapeutic modulation of these pathways in PNS neuropathies could be a complex process.


Subject(s)
MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Schwann Cells , TOR Serine-Threonine Kinases , Animals , Cell Differentiation , Mice , Myelin Sheath/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , Sciatic Nerve/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Hum Mol Genet ; 28(8): 1260-1273, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30535360

ABSTRACT

Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.


Subject(s)
Myelin Sheath/metabolism , Neuregulin-1/genetics , Neuregulin-1/physiology , Action Potentials , Animals , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Gene Knock-In Techniques/methods , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/genetics , Neuregulin-1/metabolism , Neuroglia/metabolism , Neurons/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology
3.
Glia ; 68(3): 617-630, 2020 03.
Article in English | MEDLINE | ID: mdl-31670856

ABSTRACT

FGF signaling is important for numerous cellular processes and produces diverse cellular responses. Our recent studies using mice conditionally lacking FGF-Receptor-1 (Fgfr1) or Fgfr2 during different stages of myelinogenesis revealed that Fgfr signaling is first required embryonically for the specification of oligodendrocyte progenitors (OPCs) and then later postnatally for the growth of the myelin sheath during active myelination but not for OPC proliferation, differentiation, or ensheathment of axons. What intracellular signal transduction pathways are recruited immediately downstream of Fgfrs and mediate these distinct developmentally regulated stage-specific responses remain unclear. The adapter protein Fibroblast-Growth-Factor-Receptor-Substrate-2 (Frs2) is considered a key immediate downstream target of Fgfrs. Therefore, here, we investigated the in vivo role of Frs adapters in the oligodendrocyte lineage cells, using a novel genetic approach where mice were engineered to disrupt binding of Frs2 to Fgfr1 or Fgfr2, thus specifically uncoupling Frs2 and Fgfr signaling. In addition, we used conditional mutants with complete ablation of Frs2 and Frs3. We found that Frs2 is required for specification of OPCs in the embryonic telencephalon downstream of Fgfr1. In contrast, Frs2 is largely dispensable for transducing Fgfr2-mediated signals for the growth of the myelin sheath during postnatal myelination, implying the potential involvement of other adapters downstream of Fgfr2 for this function. Together, our data demonstrate a developmental stage-specific function of Frs2 in the oligodendrocyte lineage cells. This contextual requirement of adapter proteins, downstream of Fgfrs, could partly explain the distinct responses elicited by the activation of Fgfrs during different stages of myelinogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Lineage/physiology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Fibroblast Growth Factors/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/physiology
4.
Glia ; 67(7): 1277-1295, 2019 07.
Article in English | MEDLINE | ID: mdl-30761608

ABSTRACT

Multiple extracellular and intracellular signals regulate the functions of oligodendrocytes as they progress through the complex process of developmental myelination and then maintain a functionally intact myelin sheath throughout adult life, preserving the integrity of the axons. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination. However, it remains poorly understood whether they function independently, sequentially, or converge using a common mechanism to facilitate oligodendrocyte differentiation, myelin growth, and maintenance. To address these questions, we analyzed multiple genetically modified mice and asked whether the deficits due to the conditional loss-of-function of ERK1/2 or mTOR could be abrogated by simultaneous constitutive activation of PI3K/Akt or Mek, respectively. From these studies, we concluded that while PI3K/Akt, not Mek/ERK1/2, plays a key role in promoting oligodendrocyte differentiation and timely initiation of myelination through mTORC1 signaling, Mek/ERK1/2-MAPK functions largely independently of mTORC1 to preserve the integrity of the myelinated axons during adulthood. However, to promote the efficient growth of the myelin sheath, these two pathways cooperate with each other converging at the level of mTORC1, both in the context of normal developmental myelination or following forced reactivation of the myelination program during adulthood. Thus, Mek/ERK1/2-MAPK and the PI3K/Akt/mTOR signaling pathways work both independently and cooperatively to maintain a finely tuned, temporally regulated balance as oligodendrocytes progress through different phases of developmental myelination into adulthood. Therapeutic strategies aimed at targeting remyelination in demyelinating diseases are expected to benefit from these findings.


Subject(s)
MAP Kinase Kinase Kinases/physiology , MAP Kinase Signaling System/physiology , Myelin Sheath/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , TOR Serine-Threonine Kinases/physiology , Age Factors , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Fibers, Myelinated/physiology , Signal Transduction/physiology
5.
Opt Express ; 27(13): 17463-17473, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252705

ABSTRACT

Highly efficient exciton-exciton annihilation process unique to one-dimensional systems is utilized for super-resolution imaging of air-suspended carbon nanotubes. Through the comparison of fluorescence signals in linear and sublinear regimes at different excitation powers, we extract the efficiency of the annihilation processes using conventional confocal microscopy. Spatial images of the annihilation rate of the excitons have resolution beyond the diffraction limit. We investigate excitation power dependence of the annihilation processes by experiment and Monte Carlo simulation, and the resolution improvement of the annihilation images can be quantitatively explained by the superlinearity of the annihilation process. We have also developed another method in which the cubic dependence of the annihilation rate on exciton density is utilized to achieve further sharpening of single nanotube images.

6.
Nano Lett ; 18(6): 3873-3878, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29781621

ABSTRACT

Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 107 Hz.

7.
J Neurosci ; 37(11): 2931-2946, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28193689

ABSTRACT

FGF signaling has emerged as a significant "late-stage" regulator of myelin thickness in the CNS, independent of oligodendrocyte differentiation. Therefore, it is critically important to identify the specific FGF receptor type and its downstream signaling molecules in oligodendrocytes to obtain better insights into the regulatory mechanisms of myelin growth. Here, we show that FGF receptor type 2 (FGFR2) is highly enriched at the paranodal loops of myelin. Conditional ablation of this receptor-type, but not FGF receptor type 1 (FGFR1), resulted in attenuation of myelin growth, expression of major myelin genes, key transcription factor Myrf and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) activity. This was rescued by upregulating ERK1/2 activity in these mice, strongly suggesting that ERK1/2 are key transducers of FGFR2 signals for myelin growth. However, given that the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway is also known to regulate myelin thickness, we examined FGFR2-deficient mice for the expression of key signaling molecules in this pathway. A significant downregulation of p-mTOR, p-Raptor, and p-S6RP was observed, which was restored to normal by elevating ERK1/2 activity in these mice. Similar downregulation of these molecules was observed in ERK1/2 knock-out mice. Interestingly, since p-Akt levels remained largely unchanged in these mice, it suggests a mechanism of mTORC1 activation by ERK1/2 in an Akt-independent manner in oligodendrocytes. Taken together, these data support a model in which FGFs, possibly from axons, activate FGFR2 in the oligodendrocyte/myelin compartment to increase ERK1/2 activation, which ultimately targets Myrf, as well as converges with the PI3K/Akt/mTOR pathway at the level of mTORC1, working together to drive the growth of the myelin sheath, thus increasing myelin thickness.SIGNIFICANCE STATEMENT It is well accepted that myelin is a biologically active membrane in active communication with the axons. However, the axonal signals, the receptors on myelin, and the integration of intracellular signaling pathways emanating downstream from these receptors that drive the growth of the myelin sheath remain poorly understood in the CNS. This study brings up the intriguing possibility that FGF receptor 2, in the oligodendrocyte/myelin compartment, may be one such signal. Importantly, it provides compelling evidence linking FGFR2 with the ERK1/2-MAPK pathway, which converges with the PI3K/Akt/mTOR (mechanistic target of rapamycin) pathway at the level of mTORC1 and also regulates the transcription factor Myrf, together providing a mechanistic framework for regulating both the transcriptional and translational machinery required for the proper growth of the myelin sheath.


Subject(s)
MAP Kinase Signaling System/physiology , Multiprotein Complexes/metabolism , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Enzyme Activation , Female , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Mice, Transgenic , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Up-Regulation/physiology
8.
No Shinkei Geka ; 46(1): 11-19, 2018 Jan.
Article in Japanese | MEDLINE | ID: mdl-29362280

ABSTRACT

BACKGROUND: Tarsal tunnel syndrome(TTS)is an entrapment neuropathy of the posterior tibial nerve within the tarsal tunnel below the medial malleolus. An accurate diagnosis is difficult, and TTS is usually diagnosed from clinical symptoms due to the lack of accurate diagnostic tools. We aimed to standardize the diagnosis of TTS using MRI, and report the MRI conditions for clear visualization of the tarsal tunnel. METHODS: We investigated which sequences and MRI conditions would be appropriate for the imaging of the tarsal tunnel in a healthy volunteer. As in routine brain MRI, the imaging time was within 15 minutes. We also performed an MRI study of the tarsal tunnel in two patients with TTS. RESULTS: Axial images obtained by fat-suppression 3-dimensional T2*-weighted imaging(3D-T2*WI)are the most useful for visualization of the tarsal tunnel. The axial images obtained by T2-weighted imaging(T2WI)and T1-weighted imaging(T1WI)were also useful for visualization of the area around the flexor retinaculum. The appropriate slice thickness was determined to be 1.5 mm, based on the resolution and photographic time. The flip angle, necessary for tissue resolution, was set at 15° because it provided the clearest image and highest contrast between different tissues. The total photographic time was within 14 minutes, and it is acceptable for routine MRI studies of TTS. In the two cases of TTS included in this study, the tarsal tunnel was clearly visible. CONCLUSIONS: For diagnosis of TTS using MRI, axial images obtained by fat-suppression 3D-T2*WI, 2-dimensional(2D)-T2WI, and 2D-T1WI are recommended. A coronal image obtained by reconstruction of fat-suppression 3D-T2*WI might be useful for anatomical understanding. In future studies, we plan to evaluate patients with TTS using the above protocol.


Subject(s)
Tarsal Tunnel Syndrome/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Tarsal Tunnel Syndrome/surgery
9.
J Neurosci ; 36(24): 6471-87, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27307235

ABSTRACT

UNLABELLED: Myelin growth is a tightly regulated process driven by multiple signals. ERK1/2-MAPK signaling is an important regulator of myelin thickness. Because, in demyelinating diseases, the myelin formed during remyelination fails to achieve normal thickness, increasing ERK1/2 activity in oligodendrocytes is of obvious therapeutic potential for promoting efficient remyelination. However, other studies have suggested that increased levels of ERK1/2 activity could, in fact, have detrimental effects on myelinating cells. Because the strength, duration, or timing of ERK1/2 activation may alter the biological outcomes of cellular responses markedly, here, we investigated the effect of modulating ERK1/2 activity in myelinating cells using transgenic mouse lines in which ERK1/2 activation was upregulated conditionally in a graded manner. We found enhanced myelin gene expression and myelin growth in the adult CNS at both moderate and hyperactivated levels of ERK1/2 when upregulation commenced during developmental myelination or was induced later during adulthood in quiescent preexisting oligodendrocytes, after active myelination is largely terminated. However, a late onset of demyelination and axonal degeneration occurred at hyperelevated, but not moderately elevated, levels regardless of the timing of the upregulation. Similarly, myelin and axonal pathology occurred with elevated ERK1/2 activity in Schwann cells. We conclude that a fine tuning of ERK1/2 signaling strength is critically important for normal oligodendrocyte and Schwann cell function and that disturbance of this balance has negative consequences for myelin and axonal integrity in the long term. Therefore, therapeutic modulation of ERK1/2 activity in demyelinating disease or peripheral neuropathies must be approached with caution. SIGNIFICANCE STATEMENT: ERK1/2-MAPK activation in oligodendrocytes and Schwann cells is an important signal for promoting myelin growth during developmental myelination. Here, we show that, when ERK1/2 are activated in mature quiescent oligodendrocytes during adulthood, new myelin growth is reinitiated even after active myelination is terminated, which has implications for understanding the mechanism underlying plasticity of myelin in adult life. Paradoxically, simply increasing the "strength" of ERK1/2 activation changed the biological outcome from beneficial to detrimental, adversely affecting myelin and axonal integrity in both the CNS and PNS. Therefore, this study highlights the complexity of ERK1/2-MAPK signaling in the context of oligodendrocyte and Schwann cell function in the adult animal and emphasizes the need to approach potential therapeutic modulation of ERK1/2 activity with caution.


Subject(s)
Axons/metabolism , Central Nervous System/metabolism , Gene Expression Regulation/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Myelin Sheath/metabolism , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Age Factors , Animals , Animals, Newborn , Axons/ultrastructure , Female , Male , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/genetics , Motor Activity/genetics , Motor Disorders/genetics , Motor Disorders/pathology , Muscle Strength/genetics , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Myelin Sheath/ultrastructure , Oligodendroglia/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
10.
J Gen Virol ; 98(4): 726-738, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28430100

ABSTRACT

Bat species represent natural reservoirs for a number of high-consequence human pathogens. The present study investigated the diversity of polyomaviruses (PyVs) in Zambian insectivorous and fruit bat species. We describe the complete genomes from four newly proposed African bat PyV species employing the recently recommended criteria provided by the Polyomaviridae Study Group of the International Committee on Taxonomy of Viruses. A comprehensive phylogenetic and recombination analysis was performed to determine genetic relationships and the distribution of recombination events in PyV from mammalian and avian species. The novel species of PyV from Zambian bats segregated with members of the genera Alphapolyomavirus and Betapolyomavirus, forming monophyletic clades with bat and non-human primate PyVs. Miniopterus schreibersii polyomavirus 1 and 2 segregated in a clade with South American bat PyV species, Old World monkey and chimpanzee PyVs and Human polyomavirus 13 (New Jersey PyV). Interestingly, the newly described Egyptian fruit bat PyV, tentatively named Rousettus aegyptiacus polyomavirus 1, had the highest nucleotide sequence identity to species of PyV from Indonesian fruit bats, and Rhinolophus hildebrandtii polyomavirus 1 was most closely related to New World monkey PyVs. The distribution of recombination events in PyV genomes was non-random: recombination boundaries existed in the intergene region between VP1 and LTAg and also at the 3' end of VP2/3 in the structural genes, whereas infrequent recombination was present within the LTAg gene. These findings indicate that recombination within the LTAg gene has been negatively selected against during polyomaviral evolution and support the recent proposal for taxonomic classification based on LTAg to define novel PyV species.


Subject(s)
Antigens, Viral, Tumor/genetics , Chiroptera/virology , Polyomavirus Infections/veterinary , Polyomavirus/classification , Polyomavirus/isolation & purification , Recombination, Genetic , Animals , Cluster Analysis , Genome, Viral , Phylogeny , Polyomavirus/genetics , Polyomavirus Infections/virology , Sequence Analysis, DNA , Sequence Homology , Zambia
11.
J Gen Virol ; 98(11): 2771-2785, 2017 11.
Article in English | MEDLINE | ID: mdl-28984241

ABSTRACT

Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.


Subject(s)
Chiroptera , Genetic Variation , Host Specificity , Polyomavirus Infections/veterinary , Polyomavirus/classification , Polyomavirus/isolation & purification , Tumor Virus Infections/veterinary , Africa , Animals , Antigens, Viral, Tumor/genetics , Evolution, Molecular , Phylogeny , Polyomavirus/physiology , Polyomavirus Infections/virology , Sequence Analysis, DNA , Sequence Homology , Tumor Virus Infections/virology
12.
J Neurosci Res ; 95(9): 1712-1729, 2017 09.
Article in English | MEDLINE | ID: mdl-28489286

ABSTRACT

Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes. Further, these mice also harbor activated mast cells in the central cornea, which contributes to pathological corneal neovascularization and fibrosis. This breach of corneal avascularity and immune status is associated with the growth of the tumor pannus, resulting in a corneal stroma that is nearly four times its normal size. In corneas with advanced disease, some axons became ectopically myelinated, and the disruption of Remak bundles is evident. To determine whether myofibroblast differentiation was linked to vimentin, we examined the levels and phosphorylation status of this fibrotic biomarker. Concomitant with the early upregulation of vimentin, a serine 38-phosphorylated isoform of vimentin (pSer38vim) increased in SCs, which was attributed primarily to the soluble fraction of protein-not the cytoskeletal portion. However, the overexpressed pSer38vim became predominantly cytoskeletal with the growth of the corneal tumor. Our findings demonstrate an unrecognized function of ERK1/2 in the maintenance of corneal homeostasis, wherein its over-activation in SCs promotes corneal neurofibromas. This study is also the first report of a genetically engineered mouse that spontaneously develops a corneal tumor.


Subject(s)
Corneal Diseases/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Eye Neoplasms/enzymology , Neurofibroma/enzymology , Schwann Cells/enzymology , Animals , Mice , Mice, Transgenic , Rats
13.
Arch Virol ; 162(2): 543-548, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27804019

ABSTRACT

To investigate the diversity of simian immunodeficiency virus (SIV) among nonhuman primates (NHPs) in Zambia, next-generation sequencing was performed to determine the complete genome sequence of a novel SIV recovered by co-culturing African green monkey (AGM) peripheral blood lymphocytes with human CD4+ T-cell lines. We report the first described SIV (SIVagmMAL-ZMB) from a malbrouck (Chlorocebus cynosuros). SIVagmMAL-ZMB was detected by real-time PCR analysis of splenic RNA in 3.2% (3/94) of AGMs and was undetectable in baboons (0/105). SIVagmMAL-ZMB possessed <80% nucleotide sequence identity to known SIV isolates and was located basally to vervet monkey SIV strains in all phylogenies.


Subject(s)
Cercopithecinae/virology , Phylogeny , RNA, Viral/genetics , Simian Acquired Immunodeficiency Syndrome/epidemiology , Simian Immunodeficiency Virus/classification , Animals , CD4-Positive T-Lymphocytes/virology , Coculture Techniques , Humans , Papio , Real-Time Polymerase Chain Reaction , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/isolation & purification , Spleen/virology , Zambia/epidemiology
16.
J Gen Virol ; 97(10): 2488-2493, 2016 10.
Article in English | MEDLINE | ID: mdl-27574104

ABSTRACT

Group A rotavirus is a major cause of diarrhoea in humans, especially in young children. Bats also harbour group A rotaviruses, but the genetic backgrounds of bat rotavirus strains are usually distinct from those of human rotavirus strains. We identified a new strain of group A rotavirus in the intestinal contents of a horseshoe bat in Zambia. Whole genome sequencing revealed that the identified virus, named RVA/Bat-wt/ZMB/LUS12-14/2012/G3P[3], possessed the genotype constellation G3-P[3]-I3-R2-C2-M3-A9-N2-T3-E2-H3. Several genome segments of LUS12-14 were highly similar to those of group A rotaviruses identified from humans, cows and antelopes, indicating interspecies transmission of rotaviruses between bats and other mammals with possible multiple genomic reassortment events.


Subject(s)
Chiroptera/virology , Reassortant Viruses/isolation & purification , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Rotavirus/isolation & purification , Animals , Genome, Viral , Genotype , Humans , Phylogeny , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/physiology , Rotavirus/classification , Rotavirus/genetics , Rotavirus/physiology , Viral Proteins/genetics , Zambia
17.
J Infect Dis ; 212 Suppl 2: S101-8, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25786916

ABSTRACT

Fruit bats are suspected to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Using an enzyme-linked immunosorbent assay based on the viral glycoprotein antigens, we detected filovirus-specific immunoglobulin G antibodies in 71 of 748 serum samples collected from migratory fruit bats (Eidolon helvum) in Zambia during 2006-2013. Although antibodies to African filoviruses (eg, Zaire ebolavirus) were most prevalent, some serum samples showed distinct specificity for Reston ebolavirus, which that has thus far been found only in Asia. Interestingly, the transition of filovirus species causing outbreaks in Central and West Africa during 2005-2014 seemed to be synchronized with the change of the serologically dominant virus species in these bats. These data suggest the introduction of multiple species of filoviruses in the migratory bat population and point to the need for continued surveillance of filovirus infection of wild animals in sub-Saharan Africa, including hitherto nonendemic countries.


Subject(s)
Chiroptera/virology , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Filoviridae/immunology , Africa/epidemiology , Animals , Antibodies, Viral/blood , Asia/epidemiology , Cell Line , Chiroptera/blood , Chiroptera/immunology , Disease Outbreaks , Ebolavirus/immunology , Female , Filoviridae Infections/blood , Filoviridae Infections/immunology , Glycoproteins/immunology , HEK293 Cells , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/blood , Male , Prevalence , Viral Proteins/immunology
18.
J Neurosci ; 34(48): 16031-45, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25429144

ABSTRACT

Oligodendrocytes form myelin during postnatal development and then maintain a functional myelin sheath throughout adult life. While many regulators of developmental myelination have been identified, the signal transduction mechanisms that regulate oligodendrocyte functions in adulthood are not well understood. The extracellular signal-regulated kinases-1 and -2 (ERK1/2), downstream mediators of mitogen-activated protein kinases (MAPKs), have emerged as prominent regulators of myelin formation. Here, we investigated whether these signaling molecules are also required for myelin maintenance in the adult CNS. Inducible conditional ablation of Erk1/2 in oligodendrocytes of the adult CNS resulted in a downregulation of myelin gene expression. Although myelin thickness was reduced and some axons were demyelinated, the majority of axons were wrapped by intact myelin sheaths that appeared structurally normal. However, late onset of progressive axonal degeneration, accompanied by astrogliosis, microglial activation, partial loss of oligodendrocytes, and functional impairment, occurred in the adult mice lacking ERK1/2 activity. Conditional ablation of Fibroblast Growth Factor receptors-1 and -2 (FGFR1/2) in oligodendrocytes also resulted in downregulation of myelin gene expression and development of axonal degeneration as the mice aged. Further, the level of the key transcription factor myelin gene regulatory factor (Myrf) was downregulated or upregulated in mice with genetic loss or gain of ERK1/2 function, respectively. Together, our studies demonstrate that ERK1/2-MAPK signaling is required for the long-term maintenance of myelin and axonal integrity in the adult CNS and suggest that FGFR1/2 and Myrf may, in part, contribute to signaling upstream and downstream of ERK1/2 in maintaining these oligodendrocyte functions during adulthood.


Subject(s)
Axons/physiology , Brain/physiology , MAP Kinase Signaling System/physiology , Myelin Sheath/physiology , Oligodendroglia/physiology , Spinal Cord/physiology , Age Factors , Animals , Brain/cytology , Central Nervous System/cytology , Central Nervous System/physiology , Mice , Mice, Knockout , Mice, Transgenic , Spinal Cord/cytology
19.
Emerg Infect Dis ; 21(7): 1230-3, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079728

ABSTRACT

Viral metagenomic analysis identified a new parvovirus genome in the intestinal contents of wild shrews in Zambia. Related viruses were detected in spleen tissues from wild shrews and nonhuman primates. Phylogenetic analyses showed that these viruses are related to human bufaviruses, highlighting the presence and genetic diversity of bufaviruses in wildlife.


Subject(s)
Papio cynocephalus/virology , Papio ursinus/virology , Parvoviridae Infections/veterinary , Parvovirus/genetics , Shrews/virology , Animals , Parvoviridae Infections/virology , Parvovirus/isolation & purification , Sequence Analysis, DNA
20.
Antimicrob Agents Chemother ; 59(8): 4962-73, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055368

ABSTRACT

The number of patients infected with H7N9 influenza virus has been increasing since 2013. We examined the efficacy of neuraminidase (NA) inhibitors and the efficacy of a vaccine against an H7N9 influenza virus, A/Anhui/1/2013 (H7N9), isolated from a patient in a cynomolgus macaque model. NA inhibitors (oseltamivir and peramivir) barely reduced the total virus amount because of the emergence of resistant variants with R289K or I219T in NA [residues 289 and 219 in N9 of A/Anhui/1/2013 (H7N9) correspond to 292 and 222 in N2, respectively] in three of the six treated macaques, whereas subcutaneous immunization of an inactivated vaccine derived from A/duck/Mongolia/119/2008 (H7N9) prevented propagation of A/Anhui/1/2013 (H7N9) in all vaccinated macaques. The percentage of macaques in which variant H7N9 viruses with low sensitivity to the NA inhibitors were detected was much higher than that of macaques in which variant H5N1 highly pathogenic influenza virus was detected after treatment with one of the NA inhibitors in our previous study. The virus with R289K in NA was reported in samples from human patients, whereas that with I219T in NA was identified for the first time in this study using macaques, though no variant H7N9 virus was reported in previous studies using mice. Therefore, the macaque model enables prediction of the frequency of emerging H7N9 virus resistant to NA inhibitors in vivo. Since H7N9 strains resistant to NA inhibitors might easily emerge compared to other influenza viruses, monitoring of the emergence of variants is required during treatment of H7N9 influenza virus infection with NA inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Enzyme Inhibitors/pharmacology , Influenza A Virus, H7N9 Subtype/drug effects , Neuraminidase/antagonists & inhibitors , Acids, Carbocyclic , Animals , Cyclopentanes/pharmacology , Drug Resistance, Viral/immunology , Female , Guanidines/pharmacology , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/drug therapy , Influenza, Human/virology , Macaca , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Oseltamivir/pharmacology , Primates , Vaccination/methods , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL