Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29628141

ABSTRACT

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Subject(s)
Intramolecular Transferases/metabolism , Protein Biosynthesis , Pseudouridine/metabolism , RNA, Transfer/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation , Eukaryotic Initiation Factors/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Intramolecular Transferases/antagonists & inhibitors , Intramolecular Transferases/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/pathology , Nucleic Acid Conformation , Phosphoproteins/metabolism , Poly(A)-Binding Protein I/antagonists & inhibitors , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Stem Cell Niche
2.
Cell ; 149(5): 994-1007, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608083

ABSTRACT

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic , Clonal Evolution , Mutation , Algorithms , Chromosome Aberrations , Female , Humans , Point Mutation
3.
Cell ; 149(5): 979-93, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608084

ABSTRACT

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Subject(s)
Breast Neoplasms/genetics , DNA Mutational Analysis , Genome-Wide Association Study , Mutation , APOBEC-1 Deaminase , BRCA2 Protein/genetics , Cytidine Deaminase/metabolism , Female , Genes, BRCA1 , High-Throughput Nucleotide Sequencing , Humans
5.
Nature ; 577(7791): 561-565, 2020 01.
Article in English | MEDLINE | ID: mdl-31942071

ABSTRACT

Checkpoint blockade therapies that reactivate tumour-associated T cells can induce durable tumour control and result in the long-term survival of patients with advanced cancers1. Current predictive biomarkers for therapy response include high levels of intratumour immunological activity, a high tumour mutational burden and specific characteristics of the gut microbiota2,3. Although the role of T cells in antitumour responses has thoroughly been studied, other immune cells remain insufficiently explored. Here we use clinical samples of metastatic melanomas to investigate the role of B cells in antitumour responses, and find that the co-occurrence of tumour-associated CD8+ T cells and CD20+ B cells is associated with improved survival, independently of other clinical variables. Immunofluorescence staining of CXCR5 and CXCL13 in combination with CD20 reveals the formation of tertiary lymphoid structures in these CD8+CD20+ tumours. We derived a gene signature associated with tertiary lymphoid structures, which predicted clinical outcomes in cohorts of patients treated with immune checkpoint blockade. Furthermore, B-cell-rich tumours were accompanied by increased levels of TCF7+ naive and/or memory T cells. This was corroborated by digital spatial-profiling data, in which T cells in tumours without tertiary lymphoid structures had a dysfunctional molecular phenotype. Our results indicate that tertiary lymphoid structures have a key role in the immune microenvironment in melanoma, by conferring distinct T cell phenotypes. Therapeutic strategies to induce the formation of tertiary lymphoid structures should be explored to improve responses to cancer immunotherapy.


Subject(s)
Melanoma/immunology , Melanoma/therapy , Tertiary Lymphoid Structures/immunology , Antigens, CD20/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemokine CXCL13/metabolism , Humans , Immunologic Memory/immunology , Melanoma/genetics , Melanoma/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Phenotype , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proteomics , RNA-Seq , Receptors, CXCR5/metabolism , Single-Cell Analysis , Survival Rate , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tertiary Lymphoid Structures/genetics , Treatment Outcome , Tumor Microenvironment/immunology
6.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
7.
Cancer Immunol Immunother ; 71(3): 553-563, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34272988

ABSTRACT

BACKGROUND: Studying tumor cell-T cell interactions in the tumor microenvironment (TME) can elucidate tumor immune escape mechanisms and help predict responses to cancer immunotherapy. METHODS: We selected 14 pairs of highly tumor-reactive tumor-infiltrating lymphocytes (TILs) and autologous short-term cultured cell lines, covering four distinct tumor types, and co-cultured TILs and tumors at sub-lethal ratios in vitro to mimic the interactions occurring in the TME. We extracted gene signatures associated with a tumor-directed T cell attack based on transcriptomic data of tumor cells. RESULTS: An autologous T cell attack induced pronounced transcriptomic changes in the attacked tumor cells, partially independent of IFN-γ signaling. Transcriptomic changes were mostly independent of the tumor histological type and allowed identifying common gene expression changes, including a shared gene set of 55 transcripts influenced by T cell recognition (Tumors undergoing T cell attack, or TuTack, focused gene set). TuTack scores, calculated from tumor biopsies, predicted the clinical outcome after anti-PD-1/anti-PD-L1 therapy in multiple tumor histologies. Notably, the TuTack scores did not correlate to the tumor mutational burden, indicating that these two biomarkers measure distinct biological phenomena. CONCLUSIONS: The TuTack scores measure the effects on tumor cells of an anti-tumor immune response and represent a comprehensive method to identify immunologically responsive tumors. Our findings suggest that TuTack may allow patient selection in immunotherapy clinical trials and warrant its application in multimodal biomarker strategies.


Subject(s)
Biomarkers, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/etiology , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Cell Line, Tumor , Coculture Techniques , Computational Biology/methods , DNA Contamination , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Checkpoint Inhibitors , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Organ Specificity , ROC Curve , Tumor Cells, Cultured
8.
Rheumatology (Oxford) ; 61(12): 4817-4826, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35289842

ABSTRACT

OBJECTIVES: To determine whether development of ANCA-associated vasculitis (AAV) shows a relationship with a prior infection and if prior infection affects disease characteristics and outcome. METHODS: All incident cases of AAV diagnosed in a defined region of Sweden from 2000 through 2016 were identified. For each case, 10 individuals from the general population, matched for age, sex and area of residence, were selected. Infections occurring in AAV patients and controls prior to the date of AAV diagnosis (index date for respective controls) were identified using an administrative database. Conditional logistic regression models were used to calculate odds ratios (OR) of developing AAV. Occurrence, clinical characteristics and outcome of AAV were analysed with respect to prior infection. RESULTS: Two-hundred and seventy patients with AAV (48% female) and 2687 controls were included. Prior to diagnosis/index date, 146 (54%) AAV patients had been diagnosed with infection vs 1282 (48%) controls, with OR for AAV 1.57 (95% CI 1.18, 2.19) in those with infections of the upper respiratory tract and 1.68 (1.02, 2.77) in those with pneumonia. Difference from controls was significant in patients with MPO-ANCA 1.99 (95% CI 1.25, 3.1) but not in those with PR3-ANCA 1.0 (0.61, 1.52). Patients with prior infection showed higher disease activity at AAV diagnosis. No differences in disease characteristics, comorbidities or outcome in those with and without prior infections were observed. CONCLUSIONS: Respiratory tract infections are positively associated with development of MPO- but not PR3-ANCA vasculitis. Prior infection is associated with higher disease activity at AAV diagnosis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Granulomatosis with Polyangiitis , Humans , Female , Male , Myeloblastin , Antibodies, Antineutrophil Cytoplasmic , Peroxidase , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Odds Ratio , Granulomatosis with Polyangiitis/complications , Granulomatosis with Polyangiitis/epidemiology , Granulomatosis with Polyangiitis/diagnosis
9.
Rheumatology (Oxford) ; 60(6): 2745-2754, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33253372

ABSTRACT

OBJECTIVE: To determine the incidence rate, predictors and outcome of severe infections in a population-based cohort of ANCA-associated vasculitis (AAV). METHODS: The study included 325 cases of AAV (152 female) diagnosed from 1997 through 2016 from a defined geographic area in Sweden. All severe infection events (requiring hospitalization and treatment with intravenous antimicrobials) were identified. The Birmingham vasculitis activity score (BVAS) was used to evaluate disease activity, and organ damage was assessed using the vasculitis damage index (VDI). Patients were followed from time of AAV diagnosis to death or December 2017. RESULTS: A total of 129 (40%) patients suffered at least one severe infection. In 2307 person-years (PY) of follow-up, 210 severe infections were diagnosed. The incidence rate of severe infections was 9.1/100 PY and was highest during the first year following AAV diagnosis at 22.1/100 PY (P < 0.001). Pneumonia, sepsis and urinary tract infection were the most common infections. Opportunistic infections constituted only 6% of all severe infections. In Cox regression analysis age and BVAS at diagnosis were the only factors independently predicting severe infection [hazard ratio: 1.54 (P < 0.001) and 1.27 (P = 0.001), respectively]. Severe infection was associated with poorer prognosis with respect to median VDI score 12 months post-AAV diagnosis, renal survival and mortality. Severe infections were the cause of death in 32 patients (22% of all deaths). CONCLUSION: . Severe infection is a common problem in AAV, with the most important prognostic factors being older age and high disease activity at diagnosis. Severe infections are associated with permanent organ damage and high mortality.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Bacterial Infections/epidemiology , Mycoses/epidemiology , Virus Diseases/epidemiology , Age Factors , Aged , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Bacterial Infections/mortality , Cause of Death , Cohort Studies , Female , Humans , Incidence , Kidney Failure, Chronic/complications , Male , Middle Aged , Mycoses/microbiology , Opportunistic Infections/epidemiology , Pneumonia, Bacterial/epidemiology , Prognosis , Regression Analysis , Sepsis/epidemiology , Sweden/epidemiology , Urinary Tract Infections/epidemiology , Virus Diseases/virology
10.
J Med Genet ; 57(5): 316-321, 2020 05.
Article in English | MEDLINE | ID: mdl-30291219

ABSTRACT

BACKGROUND: Inherited CDKN2A mutation is a strong risk factor for cutaneous melanoma. Moreover, carriers have been found to have poor melanoma-specific survival. In this study, responses to novel immunotherapy agents in CDKN2A mutation carriers with metastatic melanoma were evaluated. METHODS: CDKN2A mutation carriers that have developed metastatic melanoma and undergone immunotherapy treatments were identified among carriers enrolled in follow-up studies for familial melanoma. The carriers' responses were compared with responses reported in phase III clinical trials for CTLA-4 and PD-1 inhibitors. From publicly available data sets, melanomas with somatic CDKN2A mutation were analysed for association with tumour mutational load. RESULTS: Eleven of 19 carriers (58%) responded to the therapy, a significantly higher frequency than observed in clinical trials (p=0.03, binomial test against an expected rate of 37%). Further, 6 of the 19 carriers (32%) had complete response, a significantly higher frequency than observed in clinical trials (p=0.01, binomial test against an expected rate of 7%). In 118 melanomas with somatic CDKN2A mutations, significantly higher total numbers of mutations were observed compared with 761 melanomas without CDKN2A mutation (Wilcoxon test, p<0.001). CONCLUSION: Patients with CDKN2A mutated melanoma may have improved immunotherapy responses due to increased tumour mutational load, resulting in more neoantigens and stronger antitumorous immune responses.


Subject(s)
CTLA-4 Antigen/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Melanoma/drug therapy , Programmed Cell Death 1 Receptor/genetics , Adult , Aged , CTLA-4 Antigen/antagonists & inhibitors , Clinical Trials as Topic , Female , Germ-Line Mutation/genetics , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Ipilimumab/administration & dosage , Ipilimumab/adverse effects , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplasm Metastasis , Programmed Cell Death 1 Receptor/antagonists & inhibitors
11.
Cell Biol Toxicol ; 35(4): 293-332, 2019 08.
Article in English | MEDLINE | ID: mdl-30900145

ABSTRACT

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.


Subject(s)
Melanoma/pathology , Melanoma/therapy , Translational Research, Biomedical/methods , Biological Specimen Banks/trends , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Humans , Imidazoles/pharmacology , Melanoma/metabolism , Neoplasm Staging , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Pyridones/pharmacology , Pyrimidinones/pharmacology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Melanoma, Cutaneous Malignant
12.
Breast Cancer Res ; 18(1): 27, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923702

ABSTRACT

BACKGROUND: Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. METHODS: Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. RESULTS: We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. CONCLUSIONS: Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.


Subject(s)
Breast Neoplasms/genetics , Chromatin/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , CpG Islands/genetics , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Mammary Glands, Human/metabolism , Neoplasm Proteins/genetics , Oligonucleotide Array Sequence Analysis/methods , Promoter Regions, Genetic
13.
Proc Natl Acad Sci U S A ; 110(11): 4321-6, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23447565

ABSTRACT

Although targeting oncogenic mutations in the BRAF serine/threonine kinase with small molecule inhibitors can lead to significant clinical responses in melanoma, it fails to eradicate tumors in nearly all patients. Successful therapy will be aided by identification of intrinsic mechanisms that protect tumor cells from death. Here, we used a bioinformatics approach to identify drug-able, "driver" oncogenes restricted to tumor versus normal tissues. Applying this method to 88 short-term melanoma cell cultures, we show that the antiapoptotic BCL2 family member BCL2A1 is recurrently amplified in ∼30% of melanomas and is necessary for melanoma growth. BCL2A1 overexpression also promotes melanomagenesis of BRAF-immortalized melanocytes. We find that high-level expression of BCL2A1 is restricted to melanoma due to direct transcriptional control by the melanoma oncogene MITF. Although BRAF inhibitors lead to cell cycle arrest and modest apoptosis, we find that apoptosis is significantly enhanced by suppression of BCL2A1 in melanomas with BCL2A1 or MITF amplification. Moreover, we find that BCL2A1 expression is associated with poorer clinical responses to BRAF pathway inhibitors in melanoma patients. Cotreatment of melanomas with BRAF inhibitors and obatoclax, an inhibitor of BCL2A1 and other BCL2 family members, overcomes intrinsic resistance to BRAF inhibitors in BCL2A1-amplified cells in vitro and in vivo. These studies identify MITF-BCL2A1 as a lineage-specific oncogenic pathway in melanoma and underscore its role for improved response to BRAF-directed therapy.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Inhibitor of Apoptosis Proteins/metabolism , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Transformed , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Amplification/drug effects , Humans , Inhibitor of Apoptosis Proteins/genetics , Male , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Minor Histocompatibility Antigens , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
14.
Int J Cancer ; 137(9): 2220-6, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25943250

ABSTRACT

Germline CDKN2A mutations are found in 5-20% of melanoma families. Numerous studies have shown that carriers of CDKN2A mutations have increased risks of non-melanoma cancers, but so far there have been no studies investigating cancer risks in CDKN2A wild type (wt) melanoma families. In this prospective cohort study, index melanoma cases (n = 224) and their first-degree relatives (n = 944) were identified from 154 confirmed CDKN2A wt melanoma families. Cancer diagnoses in family members and matched controls were obtained from the Swedish Cancer Registry. Relative risks (RR), odds ratios (OR) and two-sided 95% confidence intervals (95% CI) were calculated. In index cases and first-degree relatives, the prospective RR for melanoma was 56.9 (95% CI 31.4-102.1) and 7.0 (95% CI 4.2-11.4), respectively, and for squamous cell skin cancers 9.1 (95% CI 6.0-13.7) and 3.4 (95% CI 2.2-5.2), respectively. In neither group, elevated risks were seen for non-skin cancers. In a subgroup analysis, CDKN2A wt melanoma families with young (<40 years) melanoma cases were found to have increased risk of non-skin cancers (RR 1.5, 95% CI 1.0-1.5). Further, MC1R gene variants were increased in familial melanoma cases compared to controls (OR 2.4, 95% CI 1.6-3.4). Our findings suggest that in the majority of CDKN2A wt melanoma families, a segregation of variants in low-risk melanoma genes such as MC1R causes increased skin cancer susceptibility, rather than mutations in high-risk cancer predisposing genes, such mutations are more probable to be found in melanoma families with young melanoma cases. This study further supports an implication of CDKN2A mutation screening as a clinical test that determines counseling and follows up routines of melanoma families.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Melanoma/genetics , Receptor, Melanocortin, Type 1/genetics , Skin Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/enzymology , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Melanoma/enzymology , Middle Aged , Prospective Studies , Risk , Skin Neoplasms/enzymology , Young Adult
15.
J Pathol ; 233(1): 39-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24399611

ABSTRACT

Diversity between metastatic melanoma tumours in individual patients is known; however, the molecular and genetic differences remain unclear. To examine the molecular and genetic differences between metastatic tumours, we performed gene-expression profiling of 63 melanoma tumours obtained from 28 patients (two or three tumours/patient), followed by analysis of their mutational landscape, using targeted deep sequencing of 1697 cancer genes and DNA copy number analysis. Gene-expression signatures revealed discordant phenotypes between tumour lesions within a patient in 50% of the cases. In 18 of 22 patients (where matched normal tissue was available), we found that the multiple lesions within a patient were genetically divergent, with one or more melanoma tumours harbouring 'private' somatic mutations. In one case, the distant subcutaneous metastasis of one patient occurring 3 months after an earlier regional lymph node metastasis had acquired 37 new coding sequence mutations, including mutations in PTEN and CDH1. However, BRAF and NRAS mutations, when present in the first metastasis, were always preserved in subsequent metastases. The patterns of nucleotide substitutions found in this study indicate an influence of UV radiation but possibly also DNA alkylating agents. Our results clearly demonstrate that metastatic melanoma is a molecularly highly heterogeneous disease that continues to progress throughout its clinical course. The private aberrations observed on a background of shared aberrations within a patient provide evidence of continued evolution of individual tumours following divergence from a common parental clone, and might have implications for personalized medicine strategies in melanoma treatment.


Subject(s)
Biomarkers, Tumor/genetics , Melanoma/genetics , Melanoma/secondary , Mutation , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Antigens, CD , Cadherins/genetics , Chromosomes, Human , DNA Copy Number Variations , DNA Mutational Analysis/methods , Disease Progression , Female , GTP Phosphohydrolases/genetics , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Lymphatic Metastasis , Male , Membrane Proteins/genetics , Middle Aged , PTEN Phosphohydrolase/genetics , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Transcriptome
16.
J Med Genet ; 51(8): 545-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24935963

ABSTRACT

BACKGROUND: Germline mutations in the tumour suppressor gene CDKN2A occur in 5-20% of familial melanoma cases. A single founder mutation, p.Arg112dup, accounts for the majority of CDKN2A mutations in Swedish carriers. In a national program, carriers of p.Arg112dup mutation have been identified. The aim of this study was to assess cancer risks in p.Arg112dup carriers and their first degree relatives (FDRs) and second degree relatives (SDRs). METHODS: In this prospective cohort study, cancer diagnoses in carriers (n=120), non-carriers (n=111), carriers' FDRs (n=275) and SDRs (n=321) and controls (n=3976) were obtained from the Swedish Cancer Registry. Relative risks (RRs) for cancers were calculated (number of cancers/person years). Two-sided 95% CIs were calculated for all RRs. RESULTS: In carriers prospective RR for non-melanoma cancers was 5.0 (95% CI 3.7 to 7.3), for pancreatic cancer 43.8 (95% CI 13.8 to 139.0), for cancers in upper digestive tissues 17.1 (95% CI 6.3 to 46.5), and in respiratory tissues 15.6 (5.4 to 46.0). In FDRs and SDRs RRs were significantly elevated for cancers in pancreas, respiratory and upper digestive tissues. In ever-smoking carriers compared with never-smoking carriers, the odds ratio (OR) of cancers in pancreas, respiratory or upper digestive tissues was 9.3 (95% CI 1.9 to 44.7). CONCLUSIONS: CDKN2A p.Arg112dup mutation carriers from melanoma-prone families and their FDRs and SDRs have elevated risk for pancreatic, lung, head and neck and gastro-oesophageal carcinomas. These cancers were mainly seen in ever-smoking carriers. Germline CDKN2A mutations may confer an increased sensitivity to carcinogens in tobacco smoke. CDKN2A mutation carriers should be counselled to abstain from smoking.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Smoking/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Mutation/genetics , Prospective Studies , Risk , Young Adult
17.
Proteomics ; 14(17-18): 1963-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25044963

ABSTRACT

Malignant melanoma (MM) patients are being treated with an increasing number of personalized medicine (PM) drugs, several of which are small molecule drugs developed to treat patients with specific disease genotypes and phenotypes. In particular, the clinical application of protein kinase inhibitors has been highly effective for certain subsets of MM patients. Vemurafenib, a protein kinase inhibitor targeting BRAF-mutated protein, has shown significant efficacy in slowing disease progression. In this paper, we provide an overview of this new generation of targeted drugs, and demonstrate the first data on localization of PM drugs within tumor compartments. In this study, we have introduced MALDI-MS imaging to provide new information on one of the drugs currently used in the PM treatment of MM, vemurafenib. In a proof-of-concept in vitro study, MALDI-MS imaging was used to identify vemurafenib applied to metastatic lymph nodes tumors of subjects attending the regional hospital network of Southern Sweden. The paper provides evidence of BRAF overexpression in tumors isolated from MM patients and localization of the specific drug targeting BRAF, vemurafenib, using MS fragment ion signatures. Our ability to determine drug uptake at the target sites of directed therapy provides important opportunity for increasing our understanding about the mode of action of drug activity within the disease environment.


Subject(s)
Antineoplastic Agents , Indoles , Melanoma , Molecular Imaging/methods , Precision Medicine/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sulfonamides , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Humans , Indoles/pharmacokinetics , Indoles/therapeutic use , Melanoma/chemistry , Melanoma/drug therapy , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Vemurafenib
18.
J Proteome Res ; 13(3): 1315-26, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24490776

ABSTRACT

Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.


Subject(s)
Biomarkers, Tumor/analysis , Melanoma/diagnosis , Neoplasm Proteins/analysis , S100 Calcium Binding Protein beta Subunit/analysis , Skin Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Biological Specimen Banks , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Feasibility Studies , Female , Gene Expression , Humans , Lymphatic Metastasis , Male , Melanoma/genetics , Melanoma/metabolism , Middle Aged , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proteomics , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Tissue Extracts/chemistry
19.
Mol Cancer ; 13: 88, 2014 Apr 26.
Article in English | MEDLINE | ID: mdl-24766647

ABSTRACT

BACKGROUND: Wnt proteins are important for developmental processes and certain diseases. WNT5A is a non-canonical Wnt protein that previously has been shown to play a role in the progression of malignant melanoma. High expression of WNT5A in melanoma tumors correlates to formation of distant metastasis and poor prognosis. This has partly been described by the findings that WNT5A expression in melanoma cell lines increases migration and invasion. METHODS: Malignant melanoma cell lines were treated with rWNT5A or WNT5A siRNA, and mRNA versus protein levels of soluble mediators were measured using RT-PCR, cytokine bead array and ELISA. The induced signaling pathways were analyzed using inhibitors, Rho-GTPase pull down assays and western blot. Ultracentrifugation and electron microscopy was used to analyze microvesicles. Gene expression microarray data obtained from primary malignant melanomas was used to verify our data. RESULTS: We show that WNT5A signaling induces a Ca2+-dependent release of exosomes containing the immunomodulatory and pro-angiogenic proteins IL-6, VEGF and MMP2 in melanoma cells. The process was independent of the transcriptional machinery and depletion of WNT5A reduced the levels of the exosome-derived proteins. The WNT5A induced exosomal secretion was neither affected by Tetanus toxin nor Brefeldin A, but was blocked by the calcium chelator Bapta, inhibited by a dominant negative version of the small Rho-GTPase Cdc42 and was accompanied by cytoskeletal reorganization. Co-cultures of melanoma/endothelial cells showed that depletion of WNT5A in melanoma cells decreased endothelial cell branching, while stimulation of endothelial cells with isolated rWNT5A-induced melanoma exosomes increased endothelial cell branching in vitro. Finally, gene expression data analysis of primary malignant melanomas revealed a correlation between WNT5A expression and the angiogenesis marker ESAM. CONCLUSIONS: These data indicate that WNT5A has a broader function on tumor progression and metastatic spread than previously known; by inducing exosome-release of immunomodulatory and pro-angiogenic factors that enhance the immunosuppressive and angiogenic capacity of the tumors thus rendering them more aggressive and more prone to metastasize.


Subject(s)
Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Proto-Oncogene Proteins/genetics , Skin Neoplasms/genetics , Wnt Proteins/genetics , Brefeldin A/pharmacology , Calcium/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Exosomes/chemistry , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Melanoma/blood supply , Melanoma/metabolism , Melanoma/pathology , Neovascularization, Pathologic/prevention & control , Proto-Oncogene Proteins/metabolism , Signal Transduction , Skin Neoplasms/blood supply , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tetanus Toxin/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wnt Proteins/metabolism , Wnt-5a Protein , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
20.
Int J Cancer ; 135(7): 1625-33, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24535833

ABSTRACT

We report the association of an inherited variant located upstream of the poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) gene (rs2249844), with survival in 11 BioGenoMEL melanoma cohorts. The gene encodes a protein involved in a number of cellular processes including single-strand DNA repair. Survival analysis was conducted for each cohort using proportional hazards regression adjusting for factors known to be associated with survival. Survival was measured as overall survival (OS) and, where available, melanoma-specific survival (MSS). Results were combined using random effects meta-analysis. Evidence for a role of the PARP1 protein in melanoma ulceration and survival was investigated by testing gene expression levels taken from formalin-fixed paraffin-embedded tumors. A significant association was seen for inheritance of the rarer variant of PARP1, rs2249844 with OS (hazard ratio (HR) = 1.16 per allele, 95% confidence interval (CI) 1.04-1.28, p = 0.005, eleven cohorts) and MSS (HR = 1.20 per allele, 95% CI 1.01-1.39, p = 0.03, eight cohorts). We report bioinformatic data supportive of a functional effect for rs2249844. Higher levels of PARP1 gene expression in tumors were shown to be associated with tumor ulceration and poorer OS.


Subject(s)
Genetic Predisposition to Disease , Melanoma/genetics , Melanoma/mortality , Poly(ADP-ribose) Polymerases/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , DNA, Neoplasm/genetics , Follow-Up Studies , Humans , Poly (ADP-Ribose) Polymerase-1 , Polymerase Chain Reaction , Prognosis , Retrospective Studies , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL