Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Neurosci ; 41(42): 8801-8814, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34475199

ABSTRACT

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3amat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3amat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.


Subject(s)
Angelman Syndrome/genetics , Disease Models, Animal , Laughter/physiology , Microcephaly/genetics , Ubiquitin-Protein Ligases/genetics , Vocalization, Animal/physiology , Angelman Syndrome/metabolism , Angelman Syndrome/psychology , Animals , Brain/metabolism , Female , Gene Deletion , Laughter/psychology , Male , Microcephaly/metabolism , Microcephaly/psychology , Organ Culture Techniques , Protein Biosynthesis/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Reflex, Startle/physiology , Social Behavior , Ubiquitin-Protein Ligases/deficiency
2.
J Neurophysiol ; 126(1): 11-27, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34038186

ABSTRACT

There is substantial evidence that both N-methyl-D-aspartate receptor (NMDAR) hypofunction and dysfunction of GABAergic neurotransmission contribute to schizophrenia, though the relationship between these pathophysiological processes remains largely unknown. Although models using cell-type-specific genetic deletion of NMDARs have been informative, they display overly pronounced phenotypes extending beyond those of schizophrenia. Here, we used the serine racemase knockout (SRKO) mice, a model of reduced NMDAR activity rather than complete receptor elimination, to examine the link between NMDAR hypofunction and decreased GABAergic inhibition. The SRKO mice, in which there is a >90% reduction in the NMDAR coagonist d-serine, exhibit many of the neurochemical and behavioral abnormalities observed in schizophrenia. We found a significant reduction in inhibitory synapses onto CA1 pyramidal neurons in the SRKO mice. This reduction increases the excitation/inhibition balance resulting in enhanced synaptically driven neuronal excitability without changes in intrinsic excitability. Consistently, significant reductions in inhibitory synapse density in CA1 were observed by immunohistochemistry. We further show, using a single-neuron genetic deletion approach, that the loss of GABAergic synapses onto pyramidal neurons observed in the SRKO mice is driven in a cell-autonomous manner following the deletion of SR in individual CA1 pyramidal cells. These results support a model whereby NMDAR hypofunction in pyramidal cells disrupts GABAergic synapses leading to disrupted feedback inhibition and impaired neuronal synchrony.NEW & NOTEWORTHY Recently, disruption of excitation/inhibition (E/I) balance has become an area of considerable interest for psychiatric research. Here, we report a reduction in inhibition in the serine racemase knockout mouse model of schizophrenia that increases E/I balance and enhances synaptically driven neuronal excitability. This reduced inhibition was driven cell-autonomously in pyramidal cells lacking serine racemase, suggesting a novel mechanism for how chronic NMDA receptor hypofunction can disrupt information processing in schizophrenia.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , GABAergic Neurons/metabolism , Inhibitory Postsynaptic Potentials/physiology , Racemases and Epimerases/deficiency , Receptors, N-Methyl-D-Aspartate/deficiency , Synapses/metabolism , Animals , Female , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Racemases and Epimerases/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Schizophrenia/genetics , Schizophrenia/metabolism , Synapses/genetics
3.
J Neurosci ; 37(7): 1950-1964, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28093473

ABSTRACT

Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K+ channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors.SIGNIFICANCE STATEMENT Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K+ channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP.


Subject(s)
Brain/cytology , Neuronal Plasticity/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Synaptotagmins/metabolism , Animals , Electric Stimulation , Excitatory Amino Acid Agents/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/drug effects , Nerve Net/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Neurons/ultrastructure , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Synaptic Transmission/drug effects , Synaptotagmins/genetics
4.
J Neurosci ; 34(15): 5285-90, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24719106

ABSTRACT

Previous studies have provided strong support for the notion that NMDAR-mediated increases in postsynaptic Ca(2+) have a crucial role in the induction of long-term depression (LTD). This view has recently been challenged, however, by findings suggesting that LTD induction is instead attributable to an ion channel-independent, metabotropic form of NMDAR signaling. Thus, to explore the role of ionotropic versus metabotropic NMDAR signaling in LTD, we examined the effects of varying extracellular Ca(2+) levels or blocking NMDAR channel ion fluxes with MK-801 on LTD and NMDAR signaling in the mouse hippocampal CA1 region. We find that the induction of LTD in the adult hippocampus is highly sensitive to extracellular Ca(2+) levels and that MK-801 blocks NMDAR-dependent LTD in the hippocampus of both adult and immature mice. Moreover, MK-801 inhibits NMDAR-mediated activation of p38-MAPK and dephosphorylation of AMPAR GluA1 subunits at sites implicated in LTD. Thus, our results indicate that the induction of LTD in the hippocampal CA1 region is dependent on ionotropic, rather than metabotropic, NMDAR signaling.


Subject(s)
CA1 Region, Hippocampal/physiology , Calcium/metabolism , Long-Term Synaptic Depression , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , CA1 Region, Hippocampal/metabolism , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Sci Rep ; 13(1): 7493, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161045

ABSTRACT

Activation of ß-adrenergic receptors (ß-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying ß-AR-dependent forms of LTP we examined the effects of the ß-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K+ channels, suggesting that ß-AR activation might facilitate LTP induction by inhibiting SK channels. However, although the SK channel blocker apamin enhanced LTP induction, it did not fully mimic the effects of isoproterenol. We therefore searched for potential alternative mechanisms using liquid chromatography-tandem mass spectrometry to determine how ß-AR activation regulates phosphorylation of postsynaptic density (PSD) proteins. Strikingly, ß-AR activation regulated hundreds of phosphorylation sites in PSD proteins that have diverse roles in dendritic spine structure and function. Moreover, within the core scaffold machinery of the PSD, ß-AR activation increased phosphorylation at several sites previously shown to be phosphorylated after LTP induction. Together, our results suggest that ß-AR activation recruits a diverse set of signaling pathways that likely act in a concerted fashion to regulate LTP induction.


Subject(s)
Receptors, Adrenergic, beta , Signal Transduction , Isoproterenol/pharmacology , Hippocampus , Long-Term Potentiation
6.
Sci Rep ; 13(1): 9595, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311798

ABSTRACT

The proper development and function of telencephalic GABAergic interneurons is critical for maintaining the excitation and inhibition (E/I) balance in cortical circuits. Glutamate contributes to cortical interneuron (CIN) development via N-methyl-D-aspartate receptors (NMDARs). NMDAR activation requires the binding of a co-agonist, either glycine or D-serine. D-serine (co-agonist at many mature forebrain synapses) is racemized by the neuronal enzyme serine racemase (SR) from L-serine. We utilized constitutive SR knockout (SR-/-) mice to investigate the effect of D-serine availability on the development of CINs and inhibitory synapses in the prelimbic cortex (PrL). We found that most immature Lhx6 + CINs expressed SR and the obligatory NMDAR subunit NR1. At embryonic day 15, SR-/- mice had an accumulation of GABA and increased mitotic proliferation in the ganglionic eminence and fewer Gad1 + (glutamic acid decarboxylase 67 kDa; GAD67) cells in the E18 neocortex. Lhx6 + cells develop into parvalbumin (PV+) and somatostatin (Sst+) CINs. In the PrL of postnatal day (PND) 16 SR-/- mice, there was a significant decrease in GAD67+ and PV+, but not SST + CIN density, which was associated with reduced inhibitory postsynaptic potentials in layer 2/3 pyramidal neurons. These results demonstrate that D-serine availability is essential for prenatal CIN development and postnatal cortical circuit maturation.


Subject(s)
Craniocerebral Trauma , Neocortex , Female , Pregnancy , Animals , Mice , Interneurons , Prefrontal Cortex , Glutamic Acid
7.
Science ; 379(6633): 700-706, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795823

ABSTRACT

Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.


Subject(s)
Antidepressive Agents , Cerebral Cortex , Hallucinogens , Neuronal Plasticity , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Hallucinogens/pharmacology , Neuronal Plasticity/drug effects , Serotonin/pharmacology , Signal Transduction , Serotonin 5-HT2 Receptor Agonists/pharmacology , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Animals , Mice , Mice, Knockout , Antidepressive Agents/pharmacology
8.
Neuron ; 110(24): 4057-4073.e8, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36202095

ABSTRACT

The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.


Subject(s)
Longevity , Synapses , Mice , Animals , Synapses/physiology , Neurons/physiology , Brain/physiology , Disks Large Homolog 4 Protein/metabolism
9.
J Neurosci ; 27(12): 3064-8, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17376967

ABSTRACT

Differential classical conditioning of the gill-withdrawal response (GWR) in Aplysia can be elicited by training in which a conditioned stimulus (CS) delivered to one side of the siphon (the CS+) is paired with a noxious unconditioned stimulus (US; tail shock), while a second conditioned stimulus (the CS-), delivered to a different siphon site, is unpaired with the US. NMDA receptor (NMDAR) activation has been shown previously to be critical for nondifferential classical conditioning in Aplysia. Here, we used a semi-intact preparation to test whether differential classical conditioning of the GWR also depends on activation of NMDARs. Differential training produced conditioned enhancement of the reflexive response to the CS+ and a reduction in the response to the CS-. Comparison of the results after differential training with those after training in which only the two CSs were presented (CS-alone experiments) indicated that the decrement in the response to CS- after differential training was not caused by habituation. Surprisingly, differential training in the NMDAR antagonist APV (DL-2-amino-5-phosphonovalerate) blocked not only the conditioned enhancement of the GWR, but also the conditioning-induced depression of the GWR. We suggest that differential conditioning involves an NMDAR-dependent, competitive interaction between the separate neural pathways activated by the CS+ and CS-.


Subject(s)
Conditioning, Classical/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Reflex/physiology , Animals , Aplysia , Conditioning, Classical/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gills/drug effects , Gills/physiology , Long-Term Potentiation/drug effects , Long-Term Synaptic Depression/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Reflex/drug effects
10.
Neuroscience ; 395: 89-100, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30447391

ABSTRACT

Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE. We find that tonic, GABAergic inhibition is enhanced in CA1 pyramidal cells from EAE mice. Although plasma membrane expression of the GABA transporter GAT-3 was decreased in the EAE hippocampus, an increased surface expression of α5 subunit-containing GABAA receptors appears to be primarily responsible for the increase in tonic inhibition during EAE. Enhanced tonic inhibition during EAE was associated with decreased CA1 pyramidal cell excitability and inhibition of α5 subunit-containing GABAA receptors with the negative allosteric modulator L-655,708 enhanced pyramidal cell excitability in EAE mice. Together, our results suggest that altered GABAergic neurotransmission may underlie deficits in hippocampus-dependent cognitive function in EAE and MS.


Subject(s)
CA1 Region, Hippocampal/physiopathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Neural Inhibition/physiology , Pyramidal Cells/physiology , Animals , CA1 Region, Hippocampal/drug effects , GABA-A Receptor Antagonists/pharmacology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Mice , Neural Inhibition/drug effects , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Pyridazines/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
11.
Elife ; 42015 Dec 10.
Article in English | MEDLINE | ID: mdl-26652002

ABSTRACT

Robust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice. Under these conditions, we demonstrate that the molecular clock in the master pacemaker, the suprachiasmatic nucleus (SCN), is unaltered while the molecular clock in the hippocampus is synchronized by the timing of food availability. This chronic circadian misalignment causes reduced hippocampal long term potentiation and total CREB expression. Importantly this mis-timed feeding resulted in dramatic deficits in hippocampal-dependent learning and memory. Our findings suggest that the timing of meals have far-reaching effects on hippocampal physiology and learned behaviour.


Subject(s)
Circadian Rhythm , Feeding Behavior , Memory , Animals , Feeding Methods , Hippocampus/physiology , Mice , Suprachiasmatic Nucleus/physiology
12.
Neuron ; 86(2): 529-40, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25843404

ABSTRACT

The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus.


Subject(s)
Association Learning/physiology , Forelimb/physiology , Movement/physiology , Neuronal Plasticity/physiology , Purkinje Cells/physiology , Spatial Memory/physiology , Animals , Channelrhodopsins , In Vitro Techniques , Mice , Mice, Transgenic , Nerve Fibers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL