Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Nature ; 630(8016): 381-386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811733

ABSTRACT

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Subject(s)
Benzhydryl Compounds , Biomass , Chemical Fractionation , Lignin , Phenols , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/metabolism , Catalysis , Cellulose/chemistry , Cellulose/metabolism , Chemical Fractionation/methods , Hydrogenation , Lignin/chemistry , Lignin/metabolism , Phenols/chemistry , Phenols/metabolism , Wood/chemistry , Xylans/chemistry , Xylans/metabolism , Xylose/chemistry , Xylose/metabolism , Fossil Fuels , Textiles
2.
Nano Lett ; 24(31): 9535-9543, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38954740

ABSTRACT

Nanosized ultrafine particles (UFPs) from natural and anthropogenic sources are widespread and pose serious health risks when inhaled by humans. However, tracing the inhaled UFPs in vivo is extremely difficult, and the distribution, translocation, and metabolism of UFPs remain unclear. Here, we report a label-free, machine learning-aided single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach for tracing the exposure pathways of airborne magnetite nanoparticles (MNPs), including external emission sources, and distribution and translocation in vivo using a mouse model. Our results provide quantitative analysis of different metabolic pathways in mice exposed to MNPs, revealing that the spleen serves as the primary site for MNP metabolism (84.4%), followed by the liver (11.4%). The translocation of inhaled UFPs across different organs alters their particle size. This work provides novel insights into the in vivo fate of UFPs as well as a versatile and powerful platform for nanotoxicology and risk assessment.


Subject(s)
Liver , Machine Learning , Magnetite Nanoparticles , Mass Spectrometry , Particle Size , Animals , Mice , Magnetite Nanoparticles/chemistry , Mass Spectrometry/methods , Liver/metabolism , Spleen/metabolism , Particulate Matter/analysis , Particulate Matter/chemistry , Tissue Distribution
3.
J Am Chem Soc ; 146(13): 9163-9171, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38515295

ABSTRACT

It remains challenging to obtain a single product in the gas-solid photocatalytic reduction of CO2 because CO and CH4 are usually produced simultaneously. This study presents the design of the I-type nested heterojunction TiO2/BiVO4 with controllable electron transport by modulating the TiO2 component. This study demonstrates that slowing electron transport could enable TiO2/BiVO4-4 to generate CO with 100% selectivity. In addition, modifying TiO2/BiVO4-4 by loading a Cu single atom further increased the CO product yield by 3.83 times (17.33 µmol·gcat-1·h-1), while maintaining 100% selectivity for CO. Characterization and density functional theory (DFT) calculations revealed that the selectivity was mainly determined by the electron transport of the support, whereas CO2 was efficiently adsorbed and activated by the Cu single atom. Such a two-step regulation strategy of combining heterojunction with single atom enhances the possibility of simultaneously obtaining high selectivity and high yield in the photocatalytic reduction of CO2.

4.
Small ; : e2403331, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898749

ABSTRACT

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

5.
Environ Sci Technol ; 58(12): 5290-5298, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38468128

ABSTRACT

Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.


Subject(s)
Animal Experimentation , Hyperuricemia , Phenols , Humans , Animals , Mice , Hyperuricemia/chemically induced , Environmental Exposure , Benzhydryl Compounds/toxicity
6.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38581381

ABSTRACT

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Triazines/analysis , Atrazine/analysis , China , Environmental Monitoring
7.
Environ Sci Technol ; 58(8): 3726-3736, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353258

ABSTRACT

Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.


Subject(s)
Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Phthalic Acids , Humans , Pregnancy , Male , Female , Animals , Rats , Rats, Sprague-Dawley , Thyroid Hormones , Phthalic Acids/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Lactation , Homeostasis , Growth and Development
8.
Environ Sci Technol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012182

ABSTRACT

Plastic pollution is a significant environmental concern globally. Plastics are normally considered chemically inert and resistant to biodegradation. Although many papers have reported enzyme-induced biodegradation of plastics, these studies are primarily limited to enzymes of microbial origin or engineered enzymes. This study reveals that poly(ethylene terephthalate) (PET, ∼6000 Da and 100 kDa) particles and plastic bottle debris (PBD, 24.9 kDa) can be efficiently degraded by a mammal-origin natural phase II metabolic isozyme, glutathione S-transferase (GST), under mild conditions. The degradation efficiency of PET plastics reached 98.9%, with a degradation rate of 2.6 g·L-1·h-1 under ambient or physiological conditions at 1 atm. PET plastics can be degraded by GST with varying environmental or biological factors (i.e., temperature, light irradiation, pH, and presence of humic acid or protein). We suggest a novel mechanism for PET degradation other than hydrolysis, i.e., the mechanism of cleavage and release of PET plastic monomers via nitridation and oxidation. This finding also reveals a novel function of GST, previously thought to only degrade small molecules (<1000 Da). This method has been successfully applied in real human serum samples. Additionally, we have tested and confirmed the ability to degrade PET of a mammal-origin natural digestive enzyme (trypsin) and a human-derived natural metabolic enzyme (CYP450). Overall, our findings provide a potential new route to plastic pollution control and contribute to our understanding of the metabolism and fate of plastics in organisms.

9.
Environ Sci Technol ; 58(21): 9125-9134, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743861

ABSTRACT

Halobenzoquinones (HBQs), an emerging unregulated category of disinfection byproduct (DBP) in drinking water, have aroused an increasing concern over their potential health risks. However, the chronic toxicity of HBQs at environmentally relevant concentrations remains largely unknown. Here, the occurrence and concentrations of 13 HBQs in drinking water from a northern megacity in China were examined using ultrahigh performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS). Four HBQs, including 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), were detected beyond 50% occurrence frequency and at median concentrations from 4 to 50 ng/L. The chronic toxicity of these four HBQs to normal human colon and liver cells (FHC and THLE-2) was investigated at these concentrations. After 90 days of exposure, 2,5-DBBQ and 2,6-DCBQ induced the highest levels of oxidative stress and deoxyribonucleic acid (DNA) damage in colon and liver cells, respectively. Moreover, 2,5-DBBQ and 2,6-DCBQ were also found to induce epithelial-mesenchymal transition (EMT) in normal human liver cells via the extracellular signal regulated kinase (ERK) signaling pathway. Importantly, heating to 100 °C (boiling) was found to efficiently reduce the levels of these four HBQs in drinking water. These results suggested that environmentally relevant concentrations of HBQs could induce cytotoxicity and genotoxicity in normal human cells, and boiling is a highly efficient way of detoxification for HBQs.


Subject(s)
Benzoquinones , Drinking Water , Water Pollutants, Chemical , Drinking Water/chemistry , Humans , Benzoquinones/toxicity , Water Pollutants, Chemical/toxicity , Tandem Mass Spectrometry , China
10.
Environ Sci Technol ; 58(19): 8117-8134, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701366

ABSTRACT

Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.


Subject(s)
Anti-Bacterial Agents , Maternal Exposure , Humans , Female , Pregnancy , Maternal-Fetal Exchange , Fetus/drug effects
11.
Environ Sci Technol ; 58(33): 14786-14796, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39106076

ABSTRACT

In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.6 ng/g]. Triphenyl phosphate (TPhP) was the dominant OPFR, accounting for 39.0-76.2% of ∑OPFRs across all tea categories. The potential factors influencing the residual OPFRs in tea were thoroughly examined, including the agricultural environment, fermentation, and packaging of teas. Tea packaging materials (TPMs) were then identified as the primary sources of OPFRs in teas. The migration test revealed that OPFRs with lower molecular weights and log Kow values exhibited a higher propensity for facilitating the migration of OPFRs from TPMs to teas. The estimated daily intakes of OPFRs from teas were relatively higher for the general populations in Mauritania, Gambia, Togo, Morocco, and Senegal (3.18-9.79 ng/kg bw/day) than China (3.12 ng/kg bw/day). The health risks arising from OPFRs in Chinese teas were minor. This study established a baseline concentration and demonstrated the contamination sources of OPFRs in Chinese tea for the first time, with an emphasis on enhancing the hygiene standards for TPMs.


Subject(s)
Flame Retardants , Organophosphates , Tea , Flame Retardants/analysis , Tea/chemistry , China , Risk Assessment , Food Packaging , Humans , Food Contamination
12.
Environ Sci Technol ; 58(1): 182-193, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38156633

ABSTRACT

Chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA), hydrogenated polyfluorooctane ether sulfonate (6:2 H-PFESA), and chlorinated polyfluorooctanesulfonate (Cl-PFOS) share structural similarities with the regulated perfluorooctanesulfonate (PFOS), but their toxic potential is rarely known. Here, the thyroid disrupting potential of these four compounds in zebrafish larvae has been comparably investigated. PFOS, Cl-PFOS, and 6:2 Cl-PFESA were accumulated in the larvae at similar levels, approximately 1.3-1.6 times higher than 6:2 H-PFESA. Additionally, PFOS, Cl-PFOS, and 6:2 Cl-PFESA exhibited stronger disruption than 6:2 H-PFESA on genetic regulation, particularly concerning thyroid hormone (TH) activation and action and on TH homeostasis in both free and total forms of thyroxine (T4) and 3,5,3'-triiodothyronine (T3). These results indicate that chlorination or oxygen insertion does not substantially alter the thyrotoxicity of PFOS, but hydrogenation mitigates it. Molecular docking analysis and the luciferase reporter gene assay provided mechanistic perspectives that the PFOS-like substances could competitively replace THs to bind with TH plasma and membrane transporters, thereby disrupting TH transport and action, respectively. Moreover, they are also potent to disrupt TH synthesis and activation through Na+/K+-dependent transport of I- or competitive binding to the sites of deiodinases.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Animals , Zebrafish , Thyroid Gland , Larva , Molecular Docking Simulation , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/chemistry , Ethers , Fluorocarbons/toxicity
13.
Environ Sci Technol ; 58(4): 1832-1841, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230996

ABSTRACT

The massive production of plastics causes the ubiquitous existence of microplastics (MPs) in the biota, therefore, posing exposure risks and potential health concerns to human beings. However, the exact mechanisms of MPs-induced toxicities and abnormalities are largely unknown. In this study, we developed a mouse model of gavage polystyrene microplastics (PS MPs) for 30 days. We found that PS MPs can damage the intestinal barrier, accumulate in the liver tissue, and cause injury. The liver and intestine are both highly associated with bile acid (BA) metabolism. Indeed, we found that PS MPs dysregulate BA synthesis and efflux-related gene expression in the liver, causing cholestasis. Tandemly, PS MPs alter the ratio of primary to secondary BA in the feces by affecting the composition of the intestinal flora. At last, PS MPs alter mice's fecal BA profile, which affects normal BA metabolism. Taken together, the present study provides robust data on the mechanism of toxicity of MPs causing the disturbance of BA metabolism via a 4-step gut-liver loop.


Subject(s)
Cholestasis , Plastics , Humans , Animals , Mice , Microplastics , Liver , Polystyrenes , Bile Acids and Salts
14.
Environ Sci Technol ; 58(15): 6804-6813, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38512799

ABSTRACT

The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.


Subject(s)
Flame Retardants , Antarctic Regions , Flame Retardants/analysis , Food Chain , Ecosystem , Bioaccumulation , Arctic Regions , Environmental Monitoring , Lipids , Halogenated Diphenyl Ethers/analysis
15.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38567993

ABSTRACT

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/analysis , Seawater/analysis , Seawater/chemistry , Isotopes/analysis , Water Pollutants, Chemical/analysis
16.
Environ Sci Technol ; 58(8): 3966-3973, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353415

ABSTRACT

The occurrence of chlorinated derivatives of bisphenol S (Clx-BPS) and BPS was investigated in nine types of paper products (n = 125), including thermal paper, corrugated boxes, mail envelopes, newspapers, flyers, magazines, food contact paper, household paper, and business cards. BPS was found in all paper product samples, while Clx-BPS were mainly found in thermal paper (from below the limit of detection (

Subject(s)
Benzhydryl Compounds , Paper , Humans , Food , Commerce
17.
Environ Sci Technol ; 58(26): 11707-11717, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38871667

ABSTRACT

Antimicrobial resistance (AMR) undermines the United Nations Sustainable Development Goals of good health and well-being. Antibiotics are known to exacerbate AMR, but nonantibiotic antimicrobials, such as quaternary ammonium compounds (QACs), are now emerging as another significant driver of AMR. However, assessing the AMR risks of QACs in complex environmental matrices remains challenging due to the ambiguity in their chemical structures and antibacterial activity. By machine learning prediction and high-resolution mass spectrometric analysis, a list of antibacterial QACs (n = 856) from industrial chemical inventories is compiled, and it leads to the identification of 50 structurally diverse antibacterial QACs in sediments, including traditional hydrocarbon-based compounds and new subclasses that bear additional functional groups, such as choline, ester, betaine, aryl ether, and pyridine. Urban wastewater, aquaculture, and hospital discharges are the main factors influencing QAC distribution patterns in estuarine sediments. Toxic unit calculations and metagenomic analysis revealed that these QACs can influence antibiotic resistance genes (particularly sulfonamide resistance genes) through cross- and coresistances. The potential to influence the AMR is related to their environmental persistence. These results suggest that controlling the source, preventing the co-use of QACs and sulfonamides, and prioritizing control of highly persistent molecules will lead to global stewardship and sustainable use of QACs.


Subject(s)
Anti-Bacterial Agents , Estuaries , Machine Learning , Quaternary Ammonium Compounds , Anti-Bacterial Agents/pharmacology , Quaternary Ammonium Compounds/chemistry , Mass Spectrometry , China , East Asian People
18.
Environ Sci Technol ; 58(14): 6077-6082, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38556743

ABSTRACT

The Paris Agreement and the Minamata Convention on Mercury are two of the most important environmental conventions being implemented concurrently, with a focus on reducing carbon and mercury emissions, respectively. The relation between mercury and carbon influences the interactions and outcomes of these two conventions. This perspective investigates the link between mercury and CO2, assessing the consequences and exploring the policy implications of this link. We present scientific evidence showing that mercury and CO2 levels are negatively correlated under natural conditions. As a result of this negative correlation, the CO2 level under the current mercury reduction scenario is predicted to be 2.4-10.1 ppm higher than the no action scenario by 2050, equivalent to 1.0-4.8 years of CO2 increase due to human activity. The underlying causations of this negative correlation are complex and need further research. Economic analysis indicates that there is a trade-off between the benefits and costs of mercury reduction actions. As reducing mercury emission may inadvertently undermine efforts to achieve climate goals, we advocate for devising a coordinated implementation strategy for carbon and mercury conventions to maximize synergies and reduce trade-offs.


Subject(s)
Carbon Dioxide , Mercury , Humans , Mercury/analysis , Policy , Climate
19.
Environ Sci Technol ; 58(1): 291-301, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38126320

ABSTRACT

With the prevalence of allergic contact dermatitis (ACD) from the usage of skin-contact products, like wearable, skin care, and hair care products, screening their skin sensitizing potential is necessary, for the sake of alleviating the consequent public health impact. In the present study, a total of 77 skin-contact products classified by four categories, watch bands (WBs), skin care products (SCPs), hair care products (HCPs), and rubber gloves (RGs), were investigated, using an optimized in vitro assay of human cell line activation test (h-CLAT). Extracting the products using neutral artificial sweat simulated well the practical usage scenarios, and testing the extracts showed that 26 of them were allergy test positive, including nine WBs, six SCPs, two HCPs, and nine RGs. The allergenic response was mainly characterized by the induction of CD54 expression, and diverse paradigms of CD54 and CD86 levels were observed by analyzing dose-response curves, which could also be influenced by the compromised viability of the THP-1 cells. The data implicated the intricate regulation by different contributors to suspicious ingredients in the test samples. Altogether, a promising methodology for testing skin allergy potential was well established for commonly used commodities by neutral artificial sweat extraction coupled with h-CLAT screening. The findings would be of great help in tracing the potential allergens in practical products and improving their qualities.


Subject(s)
Hair Preparations , Hypersensitivity , Humans , Allergens/pharmacology , THP-1 Cells , Skin
20.
Environ Sci Technol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323894

ABSTRACT

Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.

SELECTION OF CITATIONS
SEARCH DETAIL