Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Blood ; 130(21): 2307-2316, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28972011

ABSTRACT

Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS. Treatment with leniolisib (CDZ173), a selective PI3Kδ inhibitor, caused dose-dependent suppression of PI3Kδ pathway hyperactivation (measured as phosphorylation of AKT/S6) in cell lines ectopically expressing APDS-causative p110δ variants and in T-cell blasts derived from patients. A clinical trial with 6 APDS patients was conducted as a 12-week, open-label, multisite, within-subject, dose-escalation study of oral leniolisib to assess safety, pharmacokinetics, and effects on lymphoproliferation and immune dysregulation. Oral leniolisib led to a dose-dependent reduction in PI3K/AKT pathway activity assessed ex vivo and improved immune dysregulation. We observed normalization of circulating transitional and naive B cells, reduction in PD-1+CD4+ and senescent CD57+CD4- T cells, and decreases in elevated serum immunoglobulin M and inflammatory markers including interferon γ, tumor necrosis factor, CXCL13, and CXCL10 with leniolisib therapy. After 12 weeks of treatment, all patients showed amelioration of lymphoproliferation with lymph node sizes and spleen volumes reduced by 39% (mean; range, 26%-57%) and 40% (mean; range, 13%-65%), respectively. Thus, leniolisib was well tolerated and improved laboratory and clinical parameters in APDS, supporting the specific inhibition of PI3Kδ as a promising new targeted therapy in APDS and other diseases characterized by overactivation of the PI3Kδ pathway. This trial was registered at www.clinicaltrials.gov as #NCT02435173.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/enzymology , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Chemokines/blood , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/immunology , Class I Phosphatidylinositol 3-Kinases/metabolism , Demography , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin M/blood , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Infant , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Male , Mutation/genetics , Organ Size , Phenotype , Primary Immunodeficiency Diseases , Pyridines/pharmacokinetics , Pyrimidines/pharmacokinetics , Rats , Spleen/drug effects , Spleen/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transfection
2.
Synapse ; 69(1): 33-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25196464

ABSTRACT

Decreased glutamatergic neurotransmission is hypothesized to be involved in the pathophysiology of schizophrenia. Inhibition of glycine transporter Type-1 (GlyT1) reuptake is expected to increase the glutamatergic neurotransmission and may serve as treatment for cognitive and negative symptoms of schizophrenia. In this article, we present human data from a novel GlyT1 PET tracer, [(18) F]MK-6577. In the process of developing a GlyT1 inhibitor therapeutic, a PET tracer can assist in determining the dose with a high probability of sufficiently testing the mechanism of action. This article reports the human PET studies with [(18) F]MK-6577 for measuring GlyT1 receptor availability at baseline in normal human subjects and occupancy with a GlyT1 inhibitor, MK-2637. Studies were also performed to measure radiation burden and the baseline test-retest (T-RT) variability of the tracer. The effective dose from sequential whole-body dosimetry scans in three male subjects was estimated to be 24.5 ± 2.9 µSV/MBq (mean ± SD). The time-activity curves from T-RT scans modeled satisfactorily using a two tissue compartmental model. The tracer uptake was highest in the pons (VT = 6.7 ± 0.9, BPND = 4.1 ± 0.43) and lowest in the cortex (VT = 2.1 ± 0.5, BPND = 0.60 ± 0.23). VT T-RT variability measured in three subjects was <12% on average. The occupancy scans performed in a cohort of 15 subjects indicated absence of a reference region. The in vivo potency (Occ50 ) of MK-2637 was determined using two methods: A: Lassen plot with a population input function (Occ50 = 106 nM, SE = 20 nM) and B: pseudo reference tissue model using cortex as the pseudo reference region (Occ50 = 141 nM, SE = 21 nM).


Subject(s)
Benzamides , Brain/diagnostic imaging , Brain/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Sulfonamides , Adult , Benzamides/pharmacokinetics , Brain/drug effects , Brain Mapping , Cohort Studies , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Humans , Kinetics , Male , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sulfonamides/pharmacokinetics , Young Adult
3.
Neuroimage ; 68: 1-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23238431

ABSTRACT

Antagonism of the central opioid receptor like-1 receptor (ORL1) has been implicated in cognition, and has been a focus of drug discovery efforts to ameliorate the cognitive deficits that remain during the stable treatment of schizophrenia with current antipsychotics. In order to facilitate dose selection for phase II clinical testing an ORL1-specific PET tracer was developed to determine drug plasma concentration versus occupancy relationships in order to ensure that the doses selected and the degree of target engagement were sufficient to ensure adequate proof of concept testing. MK-0911 is a selective, high affinity antagonist for the ORL1 receptor radiolabeled with high specific activity (18)F for positron emission tomography (PET) studies. Evaluation of [(18)F]MK-0911 in rhesus monkey PET studies showed a pattern of brain uptake which was consistent with the known distribution of ORL1. In vitro autoradiography with [(18)F]MK-0911 in rhesus monkey and human brain tissue slices showed a regional distribution that was consistent with in vivo imaging results in monkey. Pre-treatment of rhesus monkeys with high doses of structurally diverse ORL1 antagonists MK-0584, MK-0337, or MK-5757 achieved blockade of [(18)F]MK-0911 in all gray matter regions. Baseline PET studies with [(18)F]MK-0911 in healthy human subjects showed tracer distribution and kinetics similar to that observed in rhesus monkey. Quantification of [(18)F]MK-0911 uptake in repeat human baseline PET studies showed a test-retest variability in volume of distribution (V(T)) averaging 3% across brain regions. Humans dosed orally with MK-5757 showed reduced [(18)F]MK-0911 tracer concentration in brain proportional with MK-5757 dose and plasma level. [(18)F]MK-0911 was useful for determining MK-5757-induced receptor occupancy of ORL1 to guide MK-5757 dose-selection for clinical proof-of-concept studies. Additionally, [(18)F]MK-0911 may be a useful tool for studying the pharmacology of ORL1 in various human populations and disease states.


Subject(s)
Benzimidazoles/pharmacokinetics , Brain/diagnostic imaging , Fluorine Radioisotopes/pharmacokinetics , Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Receptors, Opioid/metabolism , Adult , Animals , Benzimidazoles/chemistry , Brain/metabolism , Fluorine Radioisotopes/chemistry , Humans , Macaca mulatta , Male , Middle Aged , Piperidines/chemistry , Radiopharmaceuticals/chemistry , Tissue Distribution , Young Adult , Nociceptin Receptor
4.
J Pharmacol Exp Ther ; 347(2): 478-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975906

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [(11)C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-(11)C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2'-oxospiro[1,3-dihydroindene-2,3'-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [(11)C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [(11)C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [(11)C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [(11)C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


Subject(s)
Acetanilides/pharmacokinetics , Analgesics/pharmacokinetics , Azepines/pharmacokinetics , Brain/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists , Imidazoles/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Spiro Compounds/pharmacokinetics , Acetanilides/chemistry , Adult , Analgesics/therapeutic use , Animals , Azepines/therapeutic use , Brain/diagnostic imaging , Carbon Radioisotopes , Female , Humans , Imidazoles/therapeutic use , Macaca mulatta , Male , Middle Aged , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Molecular Structure , Protein Binding , Radiopharmaceuticals/chemistry , Species Specificity , Spiro Compounds/chemistry , Tissue Distribution , Young Adult
5.
Neuroimage ; 59(3): 2589-99, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-21930214

ABSTRACT

BACKGROUND: Glycine transporter 1 (GlyT1) inhibitors have emerged as potential treatments for schizophrenia due to their potentiation of NMDA receptor activity by modulating the local concentrations of the NMDA co-agonist glycine. [18F]MK-6577 is a potent and selective GlyT1 inhibitor PET tracer. Although differences in ligand kinetics can be expected between non-human primates and humans, the tracer pre-clinical evaluation can provide valuable information supporting protocol design and quantification in the clinical space. The main objective of this work was to evaluate the in vivo kinetics of [18F]MK-6577 in rhesus monkey brain. Additionally, a method for estimating the tracer input function from the tracer brain tissue kinetics and venous sampling was validated. This technique was applied for determination of the dose-occupancy relationship of a GlyT1 inhibitor in monkey brain. METHODS: Compartmental and Logan graphical analysis were utilized for quantification of the [18F]MK-6577 binding using the measured tracer arterial input function. The stability of the tracer volume of distribution relative to scan length was assessed. The proposed model-based input function method takes advantage of the agreement between the tracer concentration in arterial and venous plasma from ~5 min. The approach estimates the initial peak of the input curve by adding a gamma like function term to the measured venous curve. The parameters of the model function were estimated by simultaneously fitting several brain time activity curves to a compartmental model. RESULTS: Good agreement was found between the model-based and the measured arterial plasma curve and the corresponding distribution volumes. The Logan analysis was the preferred method of analysis providing reliable and stable volume of distribution and occupancy results using a 90 and possibly 60 min scan length. CONCLUSION: The model-based input function method and Logan analysis are well suited for quantification of [18F]MK-6577 binding and GlyT1 occupancy in monkey brain.


Subject(s)
Brain Chemistry/physiology , Brain/diagnostic imaging , Excitatory Amino Acid Agonists , Glycine Plasma Membrane Transport Proteins/metabolism , Algorithms , Animals , Corpus Striatum/diagnostic imaging , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacokinetics , Fluorine Radioisotopes , Glycine Plasma Membrane Transport Proteins/analysis , Image Processing, Computer-Assisted , Macaca mulatta , Models, Neurological , Models, Statistical , Positron-Emission Tomography , Receptors, N-Methyl-D-Aspartate/physiology , Thalamus/diagnostic imaging
6.
Synapse ; 65(2): 125-35, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20524178

ABSTRACT

Two moderately lipophilic, high affinity ligands for metabotropic glutamate receptor subtype 1 (mGluR1) were radiolabeled with a positron-emitting radioisotope and evaluated in rhesus monkey as potential PET tracers. Both ligands were radiolabeled with fluorine-18 via nucleophilic displacement of the corresponding 2-chloropyridine precursor with [¹8F]potassium fluoride. [¹8F]MK-1312 was found to have a suitable signal for quantification of mGluR1 receptors in nonhuman primates and was more thoroughly characterized. In vitro autoradiographic studies with [¹8F]MK-1312 in rhesus monkey and human brain tissue slices revealed an uptake distribution consistent with the known distribution of mGluR1, with the highest uptake in the cerebellum, moderate uptake in the hippocampus, thalamus, and cortical regions, and lowest uptake in the caudate and putamen. In vitro saturation binding studies in rhesus monkey and human cerebellum homogenates confirmed that [¹8F]MK-1312 binds to a single site with a B(max) /K(d) ratio of 132 and 98, respectively. PET studies in rhesus monkey with [¹8F]MK-1312 showed high brain uptake and a regional distribution consistent with in vitro autoradiography results. Blockade of [¹8F]MK-1312 uptake with mGluR1 allosteric antagonist MK-5435 dose-dependently reduced tracer uptake in all regions of gray matter to a similarly low level of tracer uptake. This revealed a large specific signal useful for determination of mGluR1 receptor occupancy in rhesus monkey. Taken together, these results are promising for clinical PET studies with [¹8F]MK-1312 to determine mGluR1 occupancy of MK-5435.


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Excitatory Amino Acid Agents , Positron-Emission Tomography , Receptors, Metabotropic Glutamate/metabolism , Animals , Autoradiography/methods , Binding Sites/drug effects , Brain/metabolism , Brain Mapping , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/chemical synthesis , Excitatory Amino Acid Agents/chemistry , Excitatory Amino Acid Agents/pharmacokinetics , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/pharmacokinetics , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Inhibitory Concentration 50 , Ligands , Macaca mulatta , Tissue Distribution , Triazoles/chemical synthesis , Triazoles/pharmacokinetics
7.
ChemMedChem ; 14(16): 1493-1502, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31273951

ABSTRACT

Autotaxin (ATX) is a secreted enzyme with tissue levels associated with tissue injury, which increase during wound healing and chronic fibrotic diseases. We selected [18 F](R,E)-3-(4-chloro-2-((5-methyl-2H-tetrazol-2-yl)methyl)phenyl)-1-(4-((5-(2-fluoroethoxy)pyridin-2-yl)methyl)-2-methylpiperazin-1-yl)prop-2-en-1-one ([18 F]PRIMATX, [18 F]2), a tracer for positron emission tomography, to image ATX expression in vivo. It successfully differentiates expression levels in lung tissue samples from idiopathic pulmonary fibrosis patients, and allows the detection of ATX-expressing tumors in living mice, confirming its potential for development as a clinical imaging agent.


Subject(s)
Lung/metabolism , Neoplasms/diagnostic imaging , Phosphoric Diester Hydrolases/analysis , Piperazines/pharmacology , Radiopharmaceuticals/pharmacology , Tetrazoles/pharmacology , Animals , Fluorine Radioisotopes/chemistry , Humans , Mice , Phosphoric Diester Hydrolases/metabolism , Piperazines/chemical synthesis , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Tetrazoles/chemical synthesis
8.
Mol Imaging Biol ; 18(4): 579-87, 2016 08.
Article in English | MEDLINE | ID: mdl-26596571

ABSTRACT

PURPOSE: A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. PROCEDURES: In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. RESULTS: [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. CONCLUSIONS: [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography/methods , Animals , Brain/diagnostic imaging , Carbon Radioisotopes , Female , Heterocyclic Compounds, 2-Ring/blood , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Macaca mulatta , Male , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Rats , Time Factors
9.
J Cereb Blood Flow Metab ; 29(7): 1346-57, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19401708

ABSTRACT

This is the first study to report results from a noninvasive dual-tracer positron emission tomography (PET) in humans not requiring arterial sampling, in which two radiotracers were injected closely in time within the same scan. These studies yield near simultaneous information on two different neuropharmacological systems, providing better characterization of a subject's neurologic condition. The noninvasive dual-tracer approach described in this study is based on the primary assumption that an appropriate bolus plus constant infusion protocol brings the reference tissue of the first radiotracer to steady state before injection of the second tracer. Two methods for separation of time-activity curves (TACs) and parameter estimation were investigated, namely (1) an extrapolation method, in which TACs of the first tracer were extrapolated over total scan duration followed by subtraction from dual-tracer TACs and (2) a simultaneous fitting method, in which reference-region models for both tracers were fitted simultaneously to dual-tracer TACs. Combinations of two reversible tracers ([(11)C]flumazenil and [(11)C]dihydrotetrabenazine) or one reversible and one irreversible tracer ([(11)C]N-methylpiperidinyl propionate) were used. After the dual-tracer scan, a single-tracer (ST) scan using one of the tracers was obtained for comparison of the dual-tracer results. Both approaches provided parameter estimates with intersubject regions-of-interest means typically within 10% of those obtained from ST scans without an appreciable increase in variance.


Subject(s)
Flumazenil/administration & dosage , Positron-Emission Tomography/methods , Tetrabenazine/analogs & derivatives , Carbon Radioisotopes , Humans , Methods , Positron-Emission Tomography/standards , Tetrabenazine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL