Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nature ; 600(7889): 536-542, 2021 12.
Article in English | MEDLINE | ID: mdl-34819669

ABSTRACT

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Subject(s)
Chromosomes , Proteome , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Chromatin/genetics , Chromosomes/metabolism , Humans , Nuclear Matrix-Associated Proteins/metabolism , Proteome/metabolism , RNA, Ribosomal , RNA-Binding Proteins/genetics
2.
Nature ; 580(7801): 136-141, 2020 04.
Article in English | MEDLINE | ID: mdl-32238925

ABSTRACT

Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Culture Techniques/methods , Cell Proliferation/genetics , Genome, Human/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Spheroids, Cellular/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Amino Acid Motifs , Animals , Carboxypeptidases/antagonists & inhibitors , Carboxypeptidases/deficiency , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Molecular Targeted Therapy , Mutation , Phenotype , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/metabolism , Signal Transduction , Spheroids, Cellular/metabolism , Xenograft Model Antitumor Assays
3.
Proc Natl Acad Sci U S A ; 119(25): e2205536119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35700360

ABSTRACT

Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin-glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.


Subject(s)
Dystrophin , Focal Adhesions , Mechanotransduction, Cellular , Muscular Dystrophy, Duchenne , Animals , Cell Line , Dystrophin/genetics , Focal Adhesions/genetics , Mechanotransduction, Cellular/genetics , Mice , Muscle Cells , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Mutation, Missense , Polymorphism, Single Nucleotide
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Signal Transduction
5.
Bioorg Med Chem ; 28(23): 115785, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33099182

ABSTRACT

ADCs based on the natural product maytansine have been successfully employed clinically. In a previous report, ADCs based on hydrophilic non-cell permeable maytansinoids was presented. The authors in this report further explore the maytansine scaffold to develop tubulin inhibitors capable of cell permeation. The research resulted in amino-benzoyl-maytansinoid payloads that were further elaborated with linkers for conjugating to antibodies. This approach was applied to MUC16 tumor targeting antibodies for ovarian cancers. A positive control ADC was evaluated alongside the amino-benzoyl-maytansinoid ADC and the efficacy observed was equivalent while the isotype control ADCs had no effect.


Subject(s)
Immunoconjugates/metabolism , Maytansine/chemistry , Tubulin Modulators/chemistry , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Maytansine/metabolism , Mice, SCID , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Transplantation, Heterologous , Tubulin Modulators/metabolism
6.
Proc Natl Acad Sci U S A ; 114(18): E3642-E3651, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416666

ABSTRACT

Despite the wide administration of several effective vaccines, rotavirus (RV) remains the single most important etiological agent of severe diarrhea in infants and young children worldwide, with an annual mortality of over 200,000 people. RV attachment and internalization into target cells is mediated by its outer capsid protein VP4. To better understand the molecular details of RV entry, we performed tandem affinity purification coupled with high-resolution mass spectrometry to map the host proteins that interact with VP4. We identified an actin-binding protein, drebrin (DBN1), that coprecipitates and colocalizes with VP4 during RV infection. Importantly, blocking DBN1 function by siRNA silencing, CRISPR knockout (KO), or chemical inhibition significantly increased host cell susceptibility to RV infection. Dbn1 KO mice exhibited higher incidence of diarrhea and more viral antigen shedding in their stool samples compared with the wild-type littermates. In addition, we found that uptake of other dynamin-dependent cargos, including transferrin, cholera toxin, and multiple viruses, was also enhanced in DBN1-deficient cells. Inhibition of cortactin or dynamin-2 abrogated the increased virus entry observed in DBN1-deficient cells, suggesting that DBN1 suppresses dynamin-mediated endocytosis via interaction with cortactin. Our study unveiled an unexpected role of DBN1 in restricting the entry of RV and other viruses into host cells and more broadly to function as a crucial negative regulator of diverse dynamin-dependent endocytic pathways.


Subject(s)
Dynamins/metabolism , Endocytosis , Neuropeptides/metabolism , Rotavirus Infections/metabolism , Rotavirus/metabolism , Virus Internalization , Animals , Cricetinae , Dynamin II , Dynamins/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Neuropeptides/genetics , Rotavirus/genetics , Rotavirus Infections/genetics
7.
PLoS Pathog ; 12(10): e1005929, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27706223

ABSTRACT

Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and ß-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated ß-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets ß-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote ß-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.


Subject(s)
Carrier Proteins/metabolism , Cullin Proteins/metabolism , Host-Parasite Interactions/physiology , Rotavirus Infections/metabolism , Viral Nonstructural Proteins/metabolism , beta-Transducin Repeat-Containing Proteins/metabolism , Animals , Blotting, Western , Flow Cytometry , Fluorescent Antibody Technique , HEK293 Cells , Humans , Immunoprecipitation , Mass Spectrometry , Proteomics/methods , Real-Time Polymerase Chain Reaction , Transfection
8.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29684277

ABSTRACT

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Immunoconjugates/administration & dosage , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice , Mice, Nude , Molecular Imaging/methods , Neoplasms/pathology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/immunology , Radiopharmaceuticals/pharmacokinetics , Receptors, Prolactin/immunology , Receptors, Prolactin/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem ; 26(9): 2271-2279, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29605304

ABSTRACT

Natural products have been used for many medicinal purposes for centuries. Antibody drug conjugates (ADCs) have utilized this rich source of small molecule therapeutics to produce several clinically useful treatments. ADCs based on the natural product maytansine have been successful clinically. The authors further the utility of the anti-cancer natural product maytansine by developing efficacious payloads and linker-payloads for conjugating to antibodies. The success of our approach was realized in the EGFRvIII targeting ADC EGFRvIII-16. The ADC was able to regress tumors in 2 tumor models (U251/EGFRvIII and MMT/EGFRvIII). When compared to a positive control ADC, the efficacy observed was similar or improved while the isotype control ADCs had no effect.


Subject(s)
Antineoplastic Agents/pharmacology , Immunotoxins/pharmacology , Maytansine/pharmacology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , CHO Cells , Cell Line, Tumor , Cricetulus , ErbB Receptors/immunology , Female , Humans , Hydrophobic and Hydrophilic Interactions , Immunotoxins/chemistry , Immunotoxins/immunology , Kinetics , Male , Maytansine/chemical synthesis , Maytansine/chemistry , Mice , Xenograft Model Antitumor Assays
10.
Cell Mol Bioeng ; 17(2): 121-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737451

ABSTRACT

Purpose: Glioblastoma (GBM) is an aggressive malignant brain tumor with 2 year survival rates of 6.7% (Stupp et al. in J Clin Oncol Off J Am Soc Clin Oncol 25:4127-4136, 2007; Mohammed et al. in Rep Pract Oncol Radiother 27:1026-1036, 2002). One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue (Lefranc et al. in J Clin Oncol Off J Am Soc Clin Oncol 23:2411-2422, 2005; Hoelzinger et al. in J Natl Cancer Inst 21:1583-1593, 2007). To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Several models of cell migration have been proposed, including the motor-clutch, bleb-based motility, and osmotic engine models. Methods: Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Results: We found that nearly all cell-vasculature interactions reflected pulling, rather than pushing, on vasculature at the cell leading edge, a finding consistent with a motor-clutch mode of migration, and inconsistent with an osmotic engine model or confined bleb-based migration. Reducing myosin motor activity, a key component in the motor-clutch model, was found to decrease migration speed at high doses for all cell types including U251 and 6 low-passage patient-derived xenograft lines (3 proneural and 3 mesenchymal subtypes). Variable responses were found at low doses, consistent with a motor-clutch mode of migration which predicts a biphasic relationship between migration speed and motor-to-clutch ratio. Targeting of molecular clutches including integrins and CD44 slowed migration of U251 cells. Conclusions: Overall we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00799-x.

11.
APL Bioeng ; 8(3): 036102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38957223

ABSTRACT

Cell migration is the major driver of invasion and metastasis during cancer progression. For cells to migrate, they utilize the actin-myosin cytoskeleton and adhesion molecules, such as integrins and CD44, to generate traction forces in their environment. CD44 primarily binds to hyaluronic acid (HA) and integrins primarily bind to extracellular matrix (ECM) proteins such as collagen. However, the role of CD44 under integrin-mediated conditions and vice versa is not well known. Here, we performed traction force microscopy (TFM) on U251 cells seeded on collagen I-coated polyacrylamide gels to assess the functional mechanical relationship between integrins and CD44. Performing TFM on integrin-mediated adhesion conditions, i.e., collagen, we found that CD44KO U251 cells exerted more traction force than wild-type (WT) U251 cells. Furthermore, untreated WT and CD44-blocked WT exhibited comparable results. Conversely, in CD44-mediated adhesive conditions, integrin-blocked WT cells exerted a higher traction force than untreated WT cells. Our data suggest that CD44 and integrins have a mutually antagonistic relationship where one receptor represses the other's ability to generate traction force on its cognate substrate.

12.
Nat Cancer ; 5(7): 996-1009, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38443662

ABSTRACT

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized breast cancer therapy. However, <50% of patients have an objective response, and nearly all patients develop resistance during therapy. To elucidate the underlying mechanisms, we constructed an interpretable deep learning model of the response to palbociclib, a CDK4/6i, based on a reference map of multiprotein assemblies in cancer. The model identifies eight core assemblies that integrate rare and common alterations across 90 genes to stratify palbociclib-sensitive versus palbociclib-resistant cell lines. Predictions translate to patients and patient-derived xenografts, whereas single-gene biomarkers do not. Most predictive assemblies can be shown by CRISPR-Cas9 genetic disruption to regulate the CDK4/6i response. Validated assemblies relate to cell-cycle control, growth factor signaling and a histone regulatory complex that we show promotes S-phase entry through the activation of the histone modifiers KAT6A and TBL1XR1 and the transcription factor RUNX1. This study enables an integrated assessment of how a tumor's genetic profile modulates CDK4/6i resistance.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Deep Learning , Drug Resistance, Neoplasm , Piperazines , Protein Kinase Inhibitors , Pyridines , Humans , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Female , Piperazines/pharmacology , Piperazines/therapeutic use , Mice , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
Nat Commun ; 15(1): 6059, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025847

ABSTRACT

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.


Subject(s)
Chromatin , Protein Inhibitors of Activated STAT , Valosin Containing Protein , Werner Syndrome Helicase , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics , Humans , Animals , Chromatin/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Mice , Cell Line, Tumor , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Microsatellite Instability , Proteolysis/drug effects , Sumoylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Xenograft Model Antitumor Assays , Female
14.
Cancer Immun ; 13: 3, 2013.
Article in English | MEDLINE | ID: mdl-23390374

ABSTRACT

We investigated whether antibodies against intracellular tumor-associated antigens support tumor-specific immunity when administered together with a treatment that destroys the tumor. We propose that released antigens form immune complexes with the antibodies, which are then efficiently taken up by dendritic cells. We cloned the first human monoclonal antibodies against the Cancer/Testis (CT) antigen, NY-ESO-1. We tested whether the monoclonal anti-NY-ESO-1 antibody (12D7) facilitates cross-presentation of a NY-ESO-1-derived epitope by dendritic cells to human CD8+ T cells, and whether this results in the maturation of dendritic cells in vitro. We investigated the efficacy of 12D7 in combination with chemotherapy using BALB/c mice bearing syngeneic CT26 tumors that express intracellular NY-ESO-1. Human dendritic cells that were incubated with NY-ESO-1:12D7 immune complexes efficiently stimulated NY-ESO-1(157-165)/HLA-A2-specific human CD8+ T cells to produce interferon-γ, whereas NY-ESO-1 alone did not. Furthermore, the incubation of dendritic cells with NY-ESO-1:12D7 immune complexes resulted in the maturation of dendritic cells. Treatment of BALB/c mice that bear CT26/NY-ESO-1 tumors with 5-fluorouracil (5-FU) plus 12D7 was significantly more effective than chemotherapy alone. We propose systemic injection of monoclonal antibodies (mAbs) against tumor-associated antigens plus a treatment that promotes the local release of those antigens resulting in immune complex formation as a novel therapeutic modality for cancer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Membrane Proteins/immunology , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Cell Differentiation/drug effects , Cloning, Molecular , Cross-Priming/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Epitope Mapping , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Mice , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/pathology , Treatment Outcome
15.
J Immunol ; 186(2): 1218-27, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21149605

ABSTRACT

Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.


Subject(s)
Antigens, CD/metabolism , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Membrane Proteins/immunology , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Clone Cells , Cross-Priming/genetics , Cross-Priming/immunology , Cytotoxicity Tests, Immunologic , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Mannose Receptor , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Minor Histocompatibility Antigens , Molecular Sequence Data , Protein Binding/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
16.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961475

ABSTRACT

Glioblastoma (GBM) is an aggressive malignant brain tumor with 2-year survival rates of 6.7% [1], [2]. One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue[3], [4]. To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Through imaging cell-vasculature interactions and utilizing drugs, antibodies, and genetic modifications to target motors and clutches, we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.

17.
Nat Commun ; 14(1): 3966, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407562

ABSTRACT

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Subject(s)
Adenocarcinoma of Lung , CCAAT-Enhancer-Binding Proteins , Lung Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , DNA Methylation , Epigenesis, Genetic , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Nat Commun ; 14(1): 2468, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117218

ABSTRACT

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.


Subject(s)
Mechanical Phenomena , Proteins , DNA Probes , Cell Physiological Phenomena , DNA
19.
Nat Cell Biol ; 25(1): 159-169, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36635501

ABSTRACT

Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Transformation, Neoplastic/metabolism , Signal Transduction/genetics , Lung Neoplasms/genetics , Genes, ras , Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
20.
Cell Syst ; 14(6): 447-463.e8, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37220749

ABSTRACT

The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).


Subject(s)
Chromatin , DNA Repair , DNA Repair/genetics , Chromatin/genetics , DNA Damage/genetics
SELECTION OF CITATIONS
SEARCH DETAIL