Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(12): 2011-2013, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35688130

ABSTRACT

In this issue of Cell, Kornblihtt and colleagues report a strategy to improve antisense oligonucleotide spinal muscular atrophy therapy. They discover that the oligonucleotide drug nusinersen, which induces exon inclusion, also promotes repressive chromatin modifications, which in turn work against exon inclusion. Notably, co-administration of histone deacetylase inhibitors counteracted this effect to augment exon inclusion.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides, Antisense , DNA , Exons , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use
2.
Nature ; 592(7853): 195-204, 2021 04.
Article in English | MEDLINE | ID: mdl-33828315

ABSTRACT

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Subject(s)
Cells/metabolism , Gene Editing/methods , Genome, Human/genetics , National Institutes of Health (U.S.)/organization & administration , Animals , Genetic Therapy , Goals , Humans , United States
3.
Nucleic Acids Res ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011883

ABSTRACT

Nonsense mutations account for >10% of human genetic disorders, including cystic fibrosis, Alagille syndrome, and Duchenne muscular dystrophy. A nonsense mutation results in the expression of a truncated protein, and therapeutic strategies aim to restore full-length protein expression. Most strategies under development, including small-molecule aminoglycosides, suppressor tRNAs, or the targeted degradation of termination factors, lack mRNA target selectivity and may poorly differentiate between nonsense and normal stop codons, resulting in off-target translation errors. Here, we demonstrate that antisense oligonucleotides can stimulate readthrough of disease-causing nonsense codons, resulting in high yields of full-length protein in mammalian cellular lysate. Readthrough efficiency depends on the sequence context near the stop codon and on the precise targeting position of an oligonucleotide, whose interaction with mRNA inhibits peptide release to promote readthrough. Readthrough-inducing antisense oligonucleotides (R-ASOs) enhance the potency of non-specific readthrough agents, including aminoglycoside G418 and suppressor tRNA, enabling a path toward target-specific readthrough of nonsense mutations in CFTR, JAG1, DMD, BRCA1 and other mutant genes. Finally, through systematic chemical engineering, we identify heavily modified fully functional R-ASO variants, enabling future therapeutic development.

4.
Nucleic Acids Res ; 52(9): 5273-5284, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38348876

ABSTRACT

RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.


Subject(s)
Central Nervous System , RNA Interference , Animals , Humans , Male , Mice , Acetylgalactosamine/chemistry , Antagomirs/genetics , Antagomirs/metabolism , Apolipoproteins E/genetics , Central Nervous System/metabolism , Gene Silencing , Liver/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
5.
Nucleic Acids Res ; 52(11): 6099-6113, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38726879

ABSTRACT

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.


Subject(s)
Central Nervous System , RNA, Small Interfering , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Central Nervous System/metabolism , Gene Silencing , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/therapy , Mice, Inbred C57BL , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry
6.
Nucleic Acids Res ; 52(9): 4799-4817, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613388

ABSTRACT

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Oligonucleotides, Antisense , RNA, Small Interfering , Xenograft Model Antitumor Assays , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , Humans , Mice , Cell Line, Tumor , Brain Neoplasms/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/therapeutic use , Gene Silencing , Mice, Nude
7.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033325

ABSTRACT

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Tissue Distribution , RNA/genetics , Oligonucleotides
8.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893269

ABSTRACT

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Subject(s)
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
9.
RNA ; 29(7): 1077-1083, 2023 07.
Article in English | MEDLINE | ID: mdl-37059467

ABSTRACT

Preadenylated single-stranded DNA ligation adaptors are essential reagents in many next generation RNA sequencing library preparation protocols. These oligonucleotides can be adenylated enzymatically or chemically. Enzymatic adenylation reactions have high yield but are not amendable to scale up. In chemical adenylation, adenosine 5'-phosphorimidazolide (ImpA) reacts with 5' phosphorylated DNA. It is easily scalable but gives poor yields, requiring labor-intensive cleanup steps. Here, we describe an improved chemical adenylation method using 95% formamide as the solvent, which results in the adenylation of oligonucleotides with >90% yield. In standard conditions, with water as the solvent, hydrolysis of the starting material to adenosine monophosphate limits the yields. To our surprise, we find that rather than increasing adenylation yields by decreasing the rate of ImpA hydrolysis, formamide does so by increasing the reaction rate between ImpA and 5'-phosphorylated DNA by ∼10-fold. The method described here enables straightforward preparation of chemically adenylated adapters with higher than 90% yield, simplifying reagent preparation for NGS.


Subject(s)
DNA , Organophosphorus Compounds , RNA , Oligonucleotides , High-Throughput Nucleotide Sequencing/methods
10.
Mol Ther ; 31(6): 1661-1674, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37177784

ABSTRACT

Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.


Subject(s)
Huntington Disease , MutS Homolog 3 Protein , Trinucleotide Repeat Expansion , Animals , Mice , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Neostriatum/metabolism , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Trinucleotide Repeat Expansion/genetics , MutS Homolog 3 Protein/genetics
11.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35920332

ABSTRACT

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Subject(s)
Endothelial Cells , Fibroblasts/drug effects , Lung/cytology , Oligonucleotides, Antisense/administration & dosage , Animals , Fibroblasts/metabolism , Gene Silencing , Lung/drug effects , Mice , Oligonucleotides/administration & dosage , Trachea/metabolism
12.
Alzheimers Dement ; 20(4): 2632-2652, 2024 04.
Article in English | MEDLINE | ID: mdl-38375983

ABSTRACT

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid/metabolism , Brain/pathology , Amyloidogenic Proteins/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic
13.
Alzheimers Dement ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031528

ABSTRACT

INTRODUCTION: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS: In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS: This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION: Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS: APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.

14.
Mol Ther ; 30(8): 2709-2721, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35477658

ABSTRACT

Aberrant activation of interferon (IFN)-γ signaling plays a key role in several autoimmune skin diseases, including lupus erythematosus, alopecia areata, vitiligo, and lichen planus. Here, we identify fully chemically modified small interfering RNAs (siRNAs) that silence the ligand binding chain of the IFN-γ receptor (IFNGR1), for the modulation of IFN-γ signaling. Conjugating these siRNAs to docosanoic acid (DCA) enables productive delivery to all major skin cell types local to the injection site, with a single dose of injection supporting effective IFNGR1 protein reduction for at least 1 month in mice. In an ex vivo model of IFN-γ signaling, DCA-siRNA efficiently inhibits the induction of IFN-γ-inducible chemokines, CXCL9 and CXCL10, in skin biopsies from the injection site. Our data demonstrate that DCA-siRNAs can be engineered for functional gene silencing in skin and establish a path toward siRNA treatment of autoimmune skin diseases.


Subject(s)
Chemokine CXCL10 , Skin Diseases , Animals , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Interferon-gamma/metabolism , Mice , RNA Interference , RNA, Small Interfering/genetics
15.
Mol Ther ; 30(3): 1329-1342, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34774753

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a severe liver disorder characterized by triglyceride accumulation, severe inflammation, and fibrosis. With the recent increase in prevalence, NASH is now the leading cause of liver transplant, with no approved therapeutics available. Although the exact molecular mechanism of NASH progression is not well understood, a widely held hypothesis is that fat accumulation is the primary driver of the disease. Therefore, diacylglycerol O-acyltransferase 2 (DGAT2), a key enzyme in triglyceride synthesis, has been explored as a NASH target. RNAi-based therapeutics is revolutionizing the treatment of liver diseases, with recent chemical advances supporting long-term gene silencing with single subcutaneous administration. Here, we identified a hyper-functional, fully chemically stabilized GalNAc-conjugated small interfering RNA (siRNA) targeting DGAT2 (Dgat2-1473) that, upon injection, elicits up to 3 months of DGAT2 silencing (>80%-90%, p < 0.0001) in wild-type and NSG-PiZ "humanized" mice. Using an obesity-driven mouse model of NASH (ob/ob-GAN), Dgat2-1473 administration prevents and reverses triglyceride accumulation (>85%, p < 0.0001) without increased accumulation of diglycerides, resulting in significant improvement of the fatty liver phenotype. However, surprisingly, the reduction in liver fat did not translate into a similar impact on inflammation and fibrosis. Thus, while Dgat2-1473 is a practical, long-lasting silencing agent for potential therapeutic attenuation of liver steatosis, combinatorial targeting of a second pathway may be necessary for therapeutic efficacy against NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Disease Models, Animal , Fibrosis , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/therapy , Obesity/genetics , Obesity/therapy , RNAi Therapeutics , Triglycerides/metabolism , Triglycerides/therapeutic use
16.
Nucleic Acids Res ; 49(21): 12069-12088, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850120

ABSTRACT

Oligonucleotides is an emerging class of chemically-distinct therapeutic modalities, where extensive chemical modifications are fundamental for their clinical applications. Inter-nucleotide backbones are critical to the behaviour of therapeutic oligonucleotides, but clinically explored backbone analogues are, effectively, limited to phosphorothioates. Here, we describe the synthesis and bio-functional characterization of an internucleotide (E)-vinylphosphonate (iE-VP) backbone, where bridging oxygen is substituted with carbon in a locked stereo-conformation. After optimizing synthetic pathways for iE-VP-linked dimer phosphoramidites in different sugar contexts, we systematically evaluated the impact of the iE-VP backbone on oligonucleotide interactions with a variety of cellular proteins. Furthermore, we systematically evaluated the impact of iE-VP on RNA-Induced Silencing Complex (RISC) activity, where backbone stereo-constraining has profound position-specific effects. Using Huntingtin (HTT) gene causative of Huntington's disease as an example, iE-VP at position 6 significantly enhanced the single mismatch discrimination ability of the RISC without negative impact on silencing of targeting wild type htt gene. These findings suggest that the iE-VP backbone can be used to modulate the activity and specificity of RISC. Our study provides (i) a new chemical tool to alter oligonucleotide-enzyme interactions and metabolic stability, (ii) insight into RISC dynamics and (iii) a new strategy for highly selective SNP-discriminating siRNAs.


Subject(s)
Huntington Disease/genetics , Oligonucleotides/metabolism , RNA, Small Interfering/metabolism , Alleles , Humans , Organophosphonates
17.
Mol Ther ; 29(4): 1382-1394, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33348054

ABSTRACT

Oligonucleotide therapeutics hold promise for the treatment of muscle- and heart-related diseases. However, oligonucleotide delivery across the continuous endothelium of muscle tissue is challenging. Here, we demonstrate that docosanoic acid (DCA) conjugation of small interfering RNAs (siRNAs) enables efficient (~5% of injected dose), sustainable (>1 month), and non-toxic (no cytokine induction at 100 mg/kg) gene silencing in both skeletal and cardiac muscles after systemic injection. When designed to target myostatin (muscle growth regulation gene), siRNAs induced ~55% silencing in various muscle tissues and 80% silencing in heart, translating into a ~50% increase in muscle volume within 1 week. Our study identifies compounds for RNAi-based modulation of gene expression in skeletal and cardiac muscles, paving the way for both functional genomics studies and therapeutic gene modulation in muscle and heart.


Subject(s)
Fatty Acids/pharmacology , Gene Transfer Techniques , Myostatin/genetics , Oligonucleotides/pharmacology , RNA, Small Interfering/pharmacology , Animals , Disease Models, Animal , Fatty Acids/chemistry , Heart/drug effects , Heart/physiopathology , Heart Diseases/genetics , Heart Diseases/pathology , Heart Diseases/therapy , Humans , Mice , Muscle, Skeletal/drug effects , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/therapy , Myocardium/pathology , Myostatin/antagonists & inhibitors , Oligonucleotides/chemistry , Oligonucleotides/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics
18.
Nucleic Acids Res ; 48(14): 7665-7680, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32672813

ABSTRACT

Small interfering RNAs (siRNAs) have revolutionized the treatment of liver diseases. However, robust siRNA delivery to other tissues represents a major technological need. Conjugating lipids (e.g. docosanoic acid, DCA) to siRNA supports extrahepatic delivery, but tissue accumulation and gene silencing efficacy are lower than that achieved in liver by clinical-stage compounds. The chemical structure of conjugated siRNA may significantly impact invivo efficacy, particularly in tissues with lower compound accumulation. Here, we report the first systematic evaluation of the impact of siRNA scaffold-i.e. structure, phosphorothioate (PS) content, linker composition-on DCA-conjugated siRNA delivery and efficacy in vivo. We found that structural asymmetry (e.g. 5- or 2-nt overhang) has no impact on accumulation, but is a principal factor for enhancing activity in extrahepatic tissues. Similarly, linker chemistry (cleavable versus stable) altered activity, but not accumulation. In contrast, increasing PS content enhanced accumulation of asymmetric compounds, but negatively impacted efficacy. Our findings suggest that siRNA tissue accumulation does not fully define efficacy, and that the impact of siRNA chemical structure on activity is driven by intracellular re-distribution and endosomal escape. Fine-tuning siRNA chemical structure for optimal extrahepatic efficacy is a critical next step for the progression of therapeutic RNAi applications beyond liver.


Subject(s)
Phosphorothioate Oligonucleotides/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , Animals , Female , Hydrophobic and Hydrophilic Interactions , Mice , RNA Interference , Tissue Distribution
19.
Nucleic Acids Res ; 47(3): 1082-1096, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30544191

ABSTRACT

Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 µg/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.


Subject(s)
Lipids/chemistry , RNA, Small Interfering/pharmacokinetics , Animals , Carbocyanines , Cholesterol , Fatty Acids , Female , Fluorescent Dyes , Kidney/metabolism , Liver/metabolism , Mice , Phosphorylcholine , RNA Interference , RNA, Small Interfering/chemical synthesis , Tissue Distribution
20.
Nucleic Acids Res ; 47(3): 1070-1081, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30535404

ABSTRACT

Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


Subject(s)
Lipids/chemistry , RNA, Small Interfering/pharmacokinetics , Animals , Blood Proteins/metabolism , Female , HeLa Cells , Hepatocytes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kidney/metabolism , Lipoproteins, LDL/metabolism , Mice , RNA Interference , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/chemistry , Receptors, LDL/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL