Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35987201

ABSTRACT

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens , Epitopes , Immunity, Humoral , Mice
2.
Proc Natl Acad Sci U S A ; 120(43): e2304274120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37856542

ABSTRACT

Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here, we investigate the compound 4Hb-TaS2 that interleaves the Mott-insulating state of 1T-TaS2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS2 and the low-temperature superconducting phase it harbors using scanning tunneling spectroscopy. We reveal a thermodynamic phase diagram that hosts a first-order quantum phase transition between a correlated Kondo-like cluster state and a depleted flat band state. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo-like cluster and the depleted flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low-frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.

3.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574685

ABSTRACT

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Vaccines , Mice , Humans , Animals , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV-1/genetics , HIV Antibodies , DNA Nucleotidylexotransferase , Complementarity Determining Regions/genetics , HIV Infections/prevention & control
4.
Small ; 19(9): e2205048, 2023 03.
Article in English | MEDLINE | ID: mdl-36534830

ABSTRACT

Repositioning is a common guideline for the prevention of pressure injuries of bedridden or wheelchair patients. However, frequent repositioning could deteriorate the quality of patient's life and induce secondary injuries. This paper introduces a method for continuous multi-site monitoring of pressure and temperature distribution from strategically deployed sensor arrays at skin interfaces via battery-free, wireless ionic liquid pressure sensors. The wirelessly delivered power enables stable operation of the ionic liquid pressure sensor, which shows enhanced sensitivity, negligible hysteresis, high linearity and cyclic stability over relevant pressure range. The experimental investigations of the wireless devices, verified by numerical simulation of the key responses, support capabilities for real-time, continuous, long-term monitoring of the pressure and temperature distribution from multiple sensor arrays. Clinical trials on two hemiplegic patients confined on bed or wheelchair integrated with the system demonstrate the feasibility of sensor arrays for a decrease in pressure and temperature distribution under minimal repositioning.


Subject(s)
Ionic Liquids , Wheelchairs , Humans , Temperature , Wireless Technology , Skin
5.
Small ; 19(32): e2206839, 2023 08.
Article in English | MEDLINE | ID: mdl-37069777

ABSTRACT

Peripheral nerve injuries cause various disabilities related to loss of motor and sensory functions. The treatment of these injuries typically requires surgical operations for improving functional recovery of the nerve. However, capabilities for continuous nerve monitoring remain a challenge. Herein, a battery-free, wireless, cuff-type, implantable, multimodal physical sensing platform for continuous in vivo monitoring of temperature and strain from the injured nerve is introduced. The thin, soft temperature, and strain sensors wrapped around the nerve exhibit good sensitivity, excellent stability, high linearity, and minimum hysteresis in relevant ranges. In particular, the strain sensor integrated with circuits for temperature compensation provides reliable, accurate strain monitoring with negligible temperature dependence. The system enables power harvesting and data communication to wireless, multiple implanted devices wrapped around the nerve. Experimental evaluations, verified by numerical simulations, with animal tests, demonstrate the feasibility and stability of the sensor system, which has great potential for continuous in vivo nerve monitoring from an early stage to complete regeneration.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Animals , Temperature , Wireless Technology
6.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106394

ABSTRACT

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Subject(s)
Biosensing Techniques/instrumentation , Microfluidics/methods , Sweat/chemistry , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Electric Impedance , Equipment Design/instrumentation , Equipment Design/methods , Fluorometry , Humans , Immunoassay , Lab-On-A-Chip Devices , Skin/chemistry , Wearable Electronic Devices
7.
Nat Mater ; 20(5): 638-644, 2021 05.
Article in English | MEDLINE | ID: mdl-33558719

ABSTRACT

Topological aspects of the geometry of DNA and similar chiral molecules have received a lot of attention, but the topology of their electronic structure is less explored. Previous experiments revealed that DNA can efficiently filter spin-polarized electrons between metal contacts, a process called chiral-induced spin selectivity. However, the underlying correlation between chiral structure and electronic spin remains elusive. In this work, we reveal an orbital texture in the band structure, a topological characteristic induced by the chirality. We found that this orbital texture enables the chiral molecule to polarize the quantum orbital. This orbital polarization effect (OPE) induces spin polarization assisted by the spin-orbit interaction of a metal contact and leads to magnetoresistance and chiral separation. The orbital angular momentum of photoelectrons also plays an essential role in related photoemission experiments. Beyond chiral-induced spin selectivity, we predict that the orbital polarization effect could induce spin-selective phenomena even in achiral but inversion-breaking materials.


Subject(s)
DNA/chemistry , Stereoisomerism
8.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Article in English | MEDLINE | ID: mdl-34326506

ABSTRACT

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Subject(s)
Absorbable Implants , Adhesives , Animals , Electric Conductivity , Electronics
9.
Molecules ; 27(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014539

ABSTRACT

Two novel synthetic approaches for synthesizing (E)-3-(1,3-diarylallylidene)oxindoles from oxindole were developed. All previously reported methods for synthesizing 3-(1,3-diarylallylidene)oxindoles utilized palladium-catalyzed reactions as a key step to form this unique skeleton. Despite high efficiency, palladium-catalyzed reactions have limitations in terms of substrate scope. Especially, an iodoaryl moiety cannot be introduced by the previous methods due to its high reactivity toward the palladium catalyst. Our Knoevenagel/allylic oxidation/Wittig and Knoevenagel/aldol/dehydration strategies complement each other and show broad substrate scope, including substrates with iodoaryl groups. The current methods utilized acetophenones, benzylidene phosphonium ylides, and benzaldehydes that are commercially available or easily accessible. Thus, the current synthetic approaches to (E)-3-(1,3-diarylallyldiene)oxindoles are readily amendable for variety of oxindole derivatives.


Subject(s)
Indoles , Palladium , Catalysis , Oxindoles
10.
Adv Funct Mater ; 31(29)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-36189172

ABSTRACT

Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period. Afterward, rapid, complete and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re-anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.

11.
Proc Natl Acad Sci U S A ; 115(41): E9542-E9549, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30228119

ABSTRACT

Materials and structures that enable long-term, intimate coupling of flexible electronic devices to biological systems are critically important to the development of advanced biomedical implants for biological research and for clinical medicine. By comparison with simple interfaces based on arrays of passive electrodes, the active electronics in such systems provide powerful and sometimes essential levels of functionality; they also demand long-lived, perfect biofluid barriers to prevent corrosive degradation of the active materials and electrical damage to the adjacent tissues. Recent reports describe strategies that enable relevant capabilities in flexible electronic systems, but only for capacitively coupled interfaces. Here, we introduce schemes that exploit patterns of highly doped silicon nanomembranes chemically bonded to thin, thermally grown layers of SiO2 as leakage-free, chronically stable, conductively coupled interfaces. The results can naturally support high-performance, flexible silicon electronic systems capable of amplified sensing and active matrix multiplexing in biopotential recording and in stimulation via Faradaic charge injection. Systematic in vitro studies highlight key considerations in the materials science and the electrical designs for high-fidelity, chronic operation. The results provide a versatile route to biointegrated forms of flexible electronics that can incorporate the most advanced silicon device technologies with broad applications in electrical interfaces to the brain and to other organ systems.


Subject(s)
Electrophysiological Phenomena , Models, Neurological , Silicon , Electrodes
12.
J Am Chem Soc ; 141(2): 763-768, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30608684

ABSTRACT

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

13.
Acc Chem Res ; 51(5): 988-998, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29664613

ABSTRACT

Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.


Subject(s)
Biocompatible Materials/chemistry , Nanostructures/chemistry , Polymers/chemistry , Silicon/chemistry , Absorbable Implants , Animals , Electrical Equipment and Supplies , Electronics/instrumentation , Electronics/methods , Rats , Semiconductors , Solubility
14.
BMC Geriatr ; 19(1): 289, 2019 10 26.
Article in English | MEDLINE | ID: mdl-31655551

ABSTRACT

BACKGROUND: Postoperative delirium (POD) is a common clinical syndrome with significant negative outcomes. Thus, we aimed to evaluate the feasibility and effectiveness of a delirium screening tool and multidisciplinary delirium prevention project. METHODS: A retrospective cohort study was conducted at a single teaching center in Korea. A cohort of patients who underwent a delirium prevention program using a simple delirium screening tool from December 2018 to February 2019 (intervention group, N = 275) was compared with the cohort from the year before implementation of the delirium prevention program (December 2017 to February 2018) (control group, N = 274). Patients aged ≥65 years who were admitted to orthopedic wards and underwent surgery were included. The incidence rates of delirium before and after implementation of the delirium prevention program, effectiveness of the delirium screening tool, change in the knowledge score of nurses, and length of hospital stay were assessed. RESULTS: The sensitivity and specificity of the screening tool for the incidence of POD were 94.1 and 72.7%, respectively. The incidence rates of POD were 10.2% (control group) and 6.2% (intervention group). The odds ratio for the risk reduction effect of the project related to the incidence of POD was 0.316 (95% confidence interval: 0.125-0.800, p = 0.015) after adjustment for possible confounders. The delirium knowledge test score increased from 40.52 to 43.24 out of 49 total points (p < 0.001). The median length of hospital stay in the intervention and control groups was 6.0 (interquartile range, 4-9) and 7.0 (interquartile range, 4-10) days, respectively (p = 0.062). CONCLUSION: The screening tool successfully identified patients at a high risk of POD at admission. The POD prevention project was feasible to implement, effective in preventing delirium, and improved knowledge regarding delirium among the medical staff. TRIAL REGISTRATION: None.


Subject(s)
Delirium/epidemiology , Delirium/prevention & control , Hospitalization/trends , Orthopedic Procedures/trends , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Aged , Cohort Studies , Delirium/diagnosis , Female , Humans , Length of Stay/trends , Male , Orthopedic Procedures/adverse effects , Postoperative Complications/diagnosis , Republic of Korea/epidemiology , Retrospective Studies
15.
J Allergy Clin Immunol ; 141(1): 137-151, 2018 01.
Article in English | MEDLINE | ID: mdl-28456618

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE: We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS: We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS: AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION: We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.


Subject(s)
Dermatitis, Atopic , Glycoproteins , Nerve Tissue Proteins , Peptides , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Psoriasis , Recombinant Fusion Proteins , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermis/immunology , Dermis/pathology , Glycoproteins/genetics , Glycoproteins/pharmacology , Humans , Mice , Mice, Inbred BALB C , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Peptides/genetics , Peptides/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/pathology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , STAT Transcription Factors/immunology
16.
Nano Lett ; 18(10): 6214-6221, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30247914

ABSTRACT

The van der Waals epitaxy of functional materials provides an interesting and efficient way to manipulate the electrical properties of various hybrid two-dimensional (2D) systems. Here we show the controlled epitaxial assembly of semiconducting one-dimensional (1D) atomic chains, AuCN, on graphene and investigate the electrical properties of 1D/2D van der Waals heterostructures. AuCN nanowire assembly is tuned by different growth conditions, although the epitaxial alignment between AuCN chains and graphene remains unchanged. The switching of the preferred nanowire growth axis indicates that diffusion kinetics affects the nanowire formation process. Semiconducting AuCN chains endow the 1D/2D hybrid system with a strong responsivity to photons with an energy above 2.7 eV, which is consistent with the bandgap of AuCN. A large UV response (responsivity ∼104 A/W) was observed under illumination using 3.1 eV (400 nm) photons. Our study clearly demonstrates that 1D chain-structured semiconductors can play a crucial role as a component in multifunctional van der Waals heterostructures.

17.
Small ; 14(45): e1802876, 2018 11.
Article in English | MEDLINE | ID: mdl-30300469

ABSTRACT

Sweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication to electronic devices with capabilities in near field communications (NFC), including most smartphones. The platform exploits ultrathin electrodes integrated within a collection of microchannels as interfaces to circuits that leverage NFC protocols. The resulting capabilities are complementary to those of previously reported colorimetric strategies. Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects exercising and at rest establish the key operational features and their utility in sweat analytics.


Subject(s)
Electronics/methods , Microfluidics/methods , Animals , Electrolytes/chemistry , Humans , Skin/chemistry , Sweat/chemistry
18.
Small ; 14(12): e1703334, 2018 03.
Article in English | MEDLINE | ID: mdl-29394467

ABSTRACT

This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.


Subject(s)
Colorimetry/methods , Microfluidics/methods , Polymers/chemistry , Sweat/chemistry , Humans , Lab-On-A-Chip Devices , Skin/metabolism
19.
J Obstet Gynaecol Res ; 44(11): 2045-2052, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30058110

ABSTRACT

AIM: We sought to examine whether parity is associated with higher incidence of metabolic syndrome in postmenopausal women. METHODS: We conducted a cross-sectional study on 4098 Korean postmenopausal women by using nationally representative data from the Korea National Health and Nutrition Examination Survey 2010-2012. Multivariate logistic regression was performed to evaluate the relationship between parity and metabolic syndrome, with adjustment for potential confounding variables. RESULTS: The rate of metabolic syndrome was significantly higher with increasing number of parity, with dose-response relationship in univariate analysis (P <0.001). In addition, higher parity (≥3 live births) was associated with more prevalence of all components of metabolic syndrome compared with two live births (parity 2 vs 3 vs ≥4: 5.5 vs 12.1 and 14.4%, respectively; P < 0.001). However, after adjusting for demographic, socioeconomic, lifestyle and reproductive factors, we found that only higher parity was significantly associated with metabolic syndrome compared with two live births, and failed to show a dose-dependent relationship (parity 2 vs 3 vs ≥4: odds ratio 1 vs 1.404 vs 1.379, respectively; P = 0.043). We also proved that among the components of metabolic syndrome, only waist circumference had a significant positive relationship with parity in a multivariable adjusted model (parity 2 vs 3 vs ≥4: odds ratio 1 vs 1.559 vs 1.656, respectively; P < 0.001). CONCLUSION: Higher parity was independently associated with a higher risk of metabolic syndrome in postmenopausal women.


Subject(s)
Metabolic Syndrome/epidemiology , Parity , Postmenopause , Aged , Cross-Sectional Studies , Female , Health Surveys , Humans , Incidence , Middle Aged , Nutrition Surveys , Republic of Korea/epidemiology
20.
Int J Mol Sci ; 19(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29518031

ABSTRACT

Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates cellular responses such as proteasomal degradation and DNA repair upon interaction with its substrate. We identified a highly cationic region within the PAR-binding motif of Iduna; the region was similar among various species and showed amino acid sequence similarity with that of known cell-penetrating peptides (CPPs). We hypothesized that this Iduna-derived cationic sequence-rich peptide (Iduna) could penetrate the cell membrane and deliver macromolecules into cells. To test this hypothesis, we generated recombinant Iduna-conjugated enhanced green fluorescent protein (Iduna-EGFP) and its tandem-repeat form (d-Iduna-EGFP). Both Iduna-EGFP and d-Iduna-EGFP efficiently penetrated Jurkat cells, with the fluorescence signals increasing dose- and time-dependently. Tandem-repeats of Iduna and other CPPs enhanced intracellular protein delivery efficiency. The delivery mechanism involves lipid-raft-mediated endocytosis following heparan sulfate interaction; d-Iduna-EGFP was localized in the nucleus as well as the cytoplasm, and its residence time was much longer than that of other controls such as TAT and Hph-1. Moreover, following intravenous administration to C57/BL6 mice, d-Iduna-EGFP was efficiently taken up by various tissues, including the liver, spleen, and intestine suggesting that the cell-penetrating function of the human Iduna-derived peptide can be utilized for experimental and therapeutic delivery of macromolecules.


Subject(s)
Endocytosis , Peptide Fragments/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Ubiquitin-Protein Ligases/chemistry , Animals , Binding Sites , Cell Membrane/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Peptide Fragments/metabolism , Protein Binding , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL