ABSTRACT
The mitochondrial genome of moss Mielichhoferia elongata has been sequenced and assembled with Spades genome assembler. It consists of 100,342 base pairs and has practically the same gene set and order as in other known bryophyte chondriomes. The genome contains 66 genes including three rRNAs, 24 tRNAs, and 40 conserved mitochondrial proteins genes. Unlike the majority of previously sequenced bryophyte mitogenomes, it lacks the functional nad7 gene. The phylogenetic reconstruction and scrutiny analysis of the primary structure of nad7 gene carried out in this study suggest its independent pseudogenization in different bryophyte lineages. Evaluation of the microsatellite (simple sequence repeat) content of the M. elongata mitochondrial genome indicates that it could be used as a tool in further studies as a phylogenetic marker. The strongly supported phylogenetic tree presented here, derived from 33 protein coding sequences of 40 bryophyte species, is consistent with other reconstructions based on a number of different data sets.
ABSTRACT
[This corrects the article DOI: 10.7717/peerj.4350.].
ABSTRACT
BACKGROUND: The recently proposed recircumscription of the genus Atraphaxis (incl. Atraphaxis section Ovczinnikovia O.V. Yurtseva ex. S. Tavakkoli and Polygonum sect. Spinescentia Boissier (=A. sect. Polygonoides S. Tavakkoli, Kaz. Osaloo & Mozaff.) makes this genus fairly heterogeneous and therefore almost undefinable based on morphology. A critical comprehensive reappraisal of the group is necessary. METHODS: Using the DNA sequence data (ITS1&2 regions of nrDNA and combined trnL intron + trnL-F IGS and rpl32-trnL((UAG)) IGS regions of plastid genome), Maximum Likelihood (ML) and Bayesian analyses (BI) were applied for phylogenetic reconstructions of the tribe Polygoneae with special attention to Atraphaxis, and related taxa. Maximum parsimony reconstructions of the evolution of perianth morphology and sporoderm ornamentation in the tribe Polygoneae were also performed. Life history, morphology of shoots, leaf blades, ocreas, perianth and achene morphology, ultrasculpture of achene surface, and pollen morphology were compared, and SEM and LM images were provided. PRINCIPAL FINDINGS: The genera Atraphaxis and Polygonum were found to be widely polyphyletic. The rarest and morphologically remarkable endemic of Tian-Shan and Pamir Atraphaxis ovczinnikovii (Atraphaxis sect. Ovczinnikovia O.V. Yurtseva ex. S. Tavakkoli) was confirmed to be a sister of the clade (Atraphaxis + Polygonum sect. Spinescentia) in plastid topology. The genus Bactria (=Atraphaxis sect. Ovczinnikovia), which circumscribes two species, is newly established as a result of this analyses. Morphological data confirm the originality of the taxon. DISCUSSION: We are arguing for a narrow delimitation of Atraphaxis with petalloid segments and striato-perforate sporoderm ornamentation as morphological synapomorphies. The recently proposed inclusion of Polygonum sect. Spinescentia in Atraphaxis is fairly questionable from a morphological standpoint. The rank of Polygonum sect. Spinescentia requires further clarification. The generic composition of the tribe Polygoneae also requires future reappraisals.