Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Clin Microbiol ; 62(5): e0031223, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38436246

ABSTRACT

The landscape of at-home testing using over-the-counter (OTC) tests has been evolving over the last decade. The United States Food and Drug Administration Emergency Use Authorization rule has been in effect since the early 2000s, and it was widely employed during the severe acute respiratory syndrome coronavirus 2 pandemic to authorize antigen and nucleic acid detection tests for use in central laboratories as well as OTC. During the pandemic, the first at-home tests for respiratory viruses became available for consumer use, which opened the door for additional respiratory virus OTC tests. Concerns may exist regarding the public's ability to properly collect samples, perform testing, interpret results, and report results to public health authorities. However, favorable comparison studies between OTC testing and centralized laboratory test results suggest that OTC testing may have a place in healthcare, and it is likely here to stay. This mini-review of OTC tests for viral respiratory diseases will briefly cover the regulatory and reimbursement environment, current OTC test availability, as well as the advantages and limitations of OTC tests.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , COVID-19/diagnosis , United States , Viruses/isolation & purification , Viruses/classification , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , Virus Diseases/diagnosis , Virus Diseases/virology
2.
J Clin Microbiol ; 61(8): e0185522, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37439686

ABSTRACT

Microbial cell-free DNA (mcfDNA) sequencing is an emerging infectious disease diagnostic tool which enables unbiased pathogen detection and quantification from plasma. The Karius Test, a commercial mcfDNA sequencing assay developed by and available since 2017 from Karius, Inc. (Redwood City, CA), detects and quantifies mcfDNA as molecules/µL in plasma. The commercial sample data and results for all tests conducted from April 2018 through mid-September 2021 were evaluated for laboratory quality metrics, reported pathogens, and data from test requisition forms. A total of 18,690 reports were generated from 15,165 patients in a hospital setting among 39 states and the District of Columbia. The median time from sample receipt to reported result was 26 h (interquartile range [IQR] 25 to 28), and 96% of samples had valid test results. Almost two-thirds (65%) of patients were adults, and 29% at the time of diagnostic testing had ICD-10 codes representing a diverse array of clinical scenarios. There were 10,752 (58%) reports that yielded at least one taxon for a total of 22,792 detections spanning 701 unique microbial taxa. The 50 most common taxa detected included 36 bacteria, 9 viruses, and 5 fungi. Opportunistic fungi (374 Aspergillus spp., 258 Pneumocystis jirovecii, 196 Mucorales, and 33 dematiaceous fungi) comprised 861 (4%) of all detections. Additional diagnostically challenging pathogens (247 zoonotic and vector-borne pathogens, 144 Mycobacterium spp., 80 Legionella spp., 78 systemic dimorphic fungi, 69 Nocardia spp., and 57 protozoan parasites) comprised 675 (3%) of all detections. This is the largest reported cohort of patients tested using plasma mcfDNA sequencing and represents the first report of a clinical grade metagenomic test performed at scale. Data reveal new insights into the breadth and complexity of potential pathogens identified.


Subject(s)
Fungi , Viruses , Adult , Humans , Fungi/genetics , Bacteria/genetics , Viruses/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics , Sequence Analysis, DNA
3.
Clin Infect Dis ; 73(11): e3974-e3976, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32812030

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) asymptomatic infections may play a critical role in disease transmission. We aim to determine the prevalence of asymptomatic SARS-CoV-2 infection at 2 hospital systems in 2 counties in Wisconsin. The SARS-CoV-2 prevalence was 1% or lower at both systems despite the higher incidence of coronavirus disease 2019 (COVID-19) in Milwaukee County.


Subject(s)
COVID-19 , SARS-CoV-2 , Asymptomatic Infections/epidemiology , Humans , Prevalence , Wisconsin/epidemiology
4.
Infect Immun ; 88(7)2020 06 22.
Article in English | MEDLINE | ID: mdl-32366575

ABSTRACT

Achromobacter xylosoxidans is increasingly recognized as a colonizer of cystic fibrosis (CF) patients, but the role that A. xylosoxidans plays in pathology remains unknown. This knowledge gap is largely due to the lack of model systems available to study the toxic potential of this bacterium. Recently, a phospholipase A2 (PLA2) encoded by a majority of A. xylosoxidans genomes, termed AxoU, was identified. Here, we show that AxoU is a type III secretion system (T3SS) substrate that induces cytotoxicity to mammalian cells. A tissue culture model was developed showing that a subset of A. xylosoxidans isolates from CF patients induce cytotoxicity in macrophages, suggestive of a pathogenic or inflammatory role in the CF lung. In a toxic strain, cytotoxicity is correlated with transcriptional activation of axoU and T3SS genes, demonstrating that this model can be used as a tool to identify and track expression of virulence determinants produced by this poorly understood bacterium.


Subject(s)
Achromobacter denitrificans/physiology , Gram-Negative Bacterial Infections/microbiology , Type III Secretion Systems , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomarkers , Cell Line, Tumor , Cystic Fibrosis/complications , Cytokines/metabolism , Cytotoxicity, Immunologic , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Mice , Phagocytosis/immunology , Virulence Factors
5.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: mdl-33087433

ABSTRACT

Group B Streptococcus (GBS) can be found to colonize about 25% of all healthy, adult women and is the leading infectious cause of early neonatal morbidity and mortality in the United States. This study evaluated the clinical performance of PhenoMatrix (PM) chromogenic detection module (CDM) digital imaging software in detection of GBS from LIM broth plated on ChromID Strepto B chromogenic medium (ChromID) using the WASP automated processor. The performance of the PM CDM was compared to manual culture review of the digital images and molecular detection of GBS. ChromID alone had a sensitivity and specificity of 84.5% and 94.7%, respectively, after 48 h compared to nucleic acid amplification testing (NAAT). Compared to the composite reference for positivity, when PM CDM was used to detect GBS from ChromID, the sensitivity was 100%, with no true-positive GBS isolates missed by 48 h of incubation. Overall, evaluating all three methods for the detection of GBS, the sensitivities of NAAT, ChromID plus PM CDM at 48 h, and ChromID alone at 48 h were 96.8%, 95.5%, and 90.3%, respectively. The specificities of NAAT, ChromID plus PM CDM, and ChromID alone were 97.7%, 63.0%, and 95.4%, respectively. The sensitivity of ChromID in combination with the PM CDM was similar to the sensitivity of molecular detection. Further, the algorithm never called a culture negative that was determined to be positive by manual reading, and it identified an additional eight true positive specimens that were missed by manual digital image culture reading.


Subject(s)
Pregnancy Complications, Infectious , Streptococcal Infections , Adult , Algorithms , Bacteriological Techniques , Culture Media , Female , Humans , Infant, Newborn , Pregnancy , Sensitivity and Specificity , Streptococcal Infections/diagnosis , Streptococcus agalactiae , Vagina
6.
J Clin Microbiol ; 58(4)2020 03 25.
Article in English | MEDLINE | ID: mdl-31941690

ABSTRACT

Automation of the clinical microbiology laboratory has become more prominent as laboratories face higher specimen volumes and understaffing and are becoming more consolidated. One recent advancement is the use of digital image analysis to rapidly distinguish between chromogenic growth for screening bacterial cultures. In this study, colony segregation software developed by Copan (Brescia, Italy) was evaluated to distinguish between significant growth and no growth of urine cultures plated onto standard blood and MacConkey agars. Specimens from 3 sites were processed on a WASP instrument (Copan) and incubated on the WASPLab platform (Copan), and plates were imaged at 0 and 24 hours postinoculation. Images were read by technologists following validated laboratory protocols (VLPs), and results were recorded in the laboratory information systems (LIS). Image analysis performed colony counts on the 24-hour images, and results were compared with the VLP. A total of 12,931 urine cultures were tested and analyzed with an overall sensitivity and specificity of 99.8% and 72.0%, respectively. After secondary review, 91.1% of manual-positive/automation-negative specimens were due to expert rules that reported the plate as contaminated or growing only normal flora and not due to threshold counts. Nine specimens were found to be manual-positive/automation-negative; a secondary review demonstrated that the results of 8 of these specimens were due to growth of microcolonies that were programmed to be ignored by the software and 1 were due to a colony count near the limit of significance. Overall, the image analysis software proved to be highly sensitive and can be utilized by laboratories to batch-review negative cultures to improve laboratory workflow.


Subject(s)
Automation, Laboratory , Bacteriological Techniques , Culture Media , Humans , Italy , Software , Urine
7.
J Clin Microbiol ; 58(2)2020 01 28.
Article in English | MEDLINE | ID: mdl-31776191

ABSTRACT

Clostridioides difficile is the leading cause of diarrhea in hospitalized U.S. patients and results in over 400,000 cases of C. difficile infection per year. C. difficile infections have mortality rates of 6 to 30% and significantly increase health care costs, because of increased length of stay and increased frequency of readmissions due to recurrences. Efforts to reduce the spread of C. difficile in hospitals have led to the development of rapid sensitive diagnostic methods. A multicenter study was performed to establish the performance characteristics of the Revogene C. difficile test (Meridian Bioscience, Cincinnati, OH, USA) for use in detection of the toxin B (tcdB) gene from toxigenic C. difficile The Revogene instrument is a new molecular platform that uses real-time PCR to detect nucleic acids in up to 8 specimens at a time. A total of 2,461 specimens from symptomatic patients that had been submitted for C. difficile testing were enrolled at 7 sites throughout the United States and Canada for evaluation of the assay. Each stool specimen was tested for the presence of the tcdB gene using the Revogene C. difficile test, and results were compared with those of the reference method, a combination of direct and enriched culture methods. Overall, the Revogene C. difficile test demonstrated a sensitivity of 85.0% (95% confidence interval, 80% to 88%) and a specificity of 97.2% (95% confidence interval, 96% to 98%). The Revogene C. difficile test, using clinical stool specimens for detection of tcdB in C. difficile, demonstrated acceptable sensitivity and specificity, with a short turnaround time.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Feces/microbiology , Molecular Diagnostic Techniques/methods , Adolescent , Adult , Canada , Child , Child, Preschool , Clostridium Infections/microbiology , Diarrhea/microbiology , Humans , Infant , Middle Aged , Retrospective Studies , Sensitivity and Specificity , United States , Young Adult
8.
J Clin Microbiol ; 58(7)2020 06 24.
Article in English | MEDLINE | ID: mdl-32376668

ABSTRACT

NG-Test Carba 5 is a rapid in vitro multiplex immunoassay for the phenotypic detection and differentiation of five common carbapenemase families (KPC, OXA-48-like, VIM, IMP, and NDM) directly from bacterial colonies. The assay is simple to perform and has recently received U.S. Food and Drug Administration clearance. A method comparison study was performed at geographically diverse medical centers (n = 3) in the United States, where 309 Enterobacterales and Pseudomonas aeruginosa isolates were evaluated by NG-Test Carba 5 (NG Biotech, Guipry, France), the Xpert Carba-R assay (Cepheid, Inc., Sunnyvale, CA), the modified carbapenem inactivation method (mCIM), the EDTA-modified carbapenem inactivation method, and disk diffusion with carbapenems. Colonies from tryptic soy agar with 5% sheep blood (blood agar) and MacConkey agar were tested, and the results were compared to those obtained by a composite reference method. Additionally, a fourth medical center performed a medium comparison study by evaluating the performance characteristics of NG-Test Carba 5 from blood, MacConkey, and Mueller-Hinton agars with 110 isolates of Enterobacterales and P. aeruginosa These results were compared to the expected genotypic and mCIM results. For the multicenter method comparison study, the overall positive percent agreement (PPA) and the overall negative percent agreement (NPA) of NG-Test Carba 5 with the composite reference method were 100% for both blood and MacConkey agars. The medium comparison study at the fourth site showed that the PPA ranged from 98.9% to 100% and that the NPA ranged from 95.2% to 100% for blood, MacConkey, and Mueller-Hinton agars. NG-Test Carba 5 accurately detected and differentiated five common carbapenemase families from Enterobacterales and P. aeruginosa colonies on commonly used agar media. The results of this test will support a streamlined laboratory work flow and will expedite therapeutic and infection control decisions.


Subject(s)
Bacterial Proteins , beta-Lactamases , Animals , Bacterial Proteins/genetics , France , Sensitivity and Specificity , Sheep , beta-Lactamases/genetics
9.
J Clin Microbiol ; 58(7)2020 06 24.
Article in English | MEDLINE | ID: mdl-32350045

ABSTRACT

Lower respiratory tract infections, including hospital-acquired and ventilator-associated pneumonia, are common in hospitalized patient populations. Standard methods frequently fail to identify the infectious etiology due to the polymicrobial nature of respiratory specimens and the necessity of ordering specific tests to identify viral agents. The potential severity of these infections combined with a failure to clearly identify the causative pathogen results in administration of empirical antibiotic agents based on clinical presentation and other risk factors. We examined the impact of the multiplexed, semiquantitative BioFire FilmArray Pneumonia panel (PN panel) test on laboratory reporting for 259 adult inpatients submitting bronchoalveolar lavage (BAL) specimens for laboratory analysis. The PN panel demonstrated a combined 96.2% positive percent agreement (PPA) and 98.1% negative percent agreement (NPA) for the qualitative identification of 15 bacterial targets compared to routine bacterial culture. Semiquantitative values reported by the PN panel were frequently higher than values reported by culture, resulting in semiquantitative agreement (within the same log10 value) of 43.6% between the PN panel and culture; however, all bacterial targets reported as >105 CFU/ml in culture were reported as ≥105 genomic copies/ml by the PN panel. Viral targets were identified by the PN panel in 17.7% of specimens tested, of which 39.1% were detected in conjunction with a bacterial target. A review of patient medical records, including clinically prescribed antibiotics, revealed the potential for antibiotic adjustment in 70.7% of patients based on the PN panel result, including discontinuation or de-escalation in 48.2% of patients, resulting in an average savings of 6.2 antibiotic days/patient.


Subject(s)
Antimicrobial Stewardship , Pneumonia , Respiratory Tract Infections , Adult , Humans , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy
10.
J Clin Microbiol ; 58(1)2019 12 23.
Article in English | MEDLINE | ID: mdl-31694967

ABSTRACT

Urine cultures are among the most common specimens received by clinical laboratories and generate a major share of the laboratory workload. Chromogenic agar can expedite culture results, but technologist review is still needed. In this study, we evaluated the ability of the WASPLab software to interpret urine specimens plated onto chromID CPS Elite (CPSE) agar. Urine specimens submitted for bacterial culture were plated onto CPSE agar with a 1-µl loop using the WASP. Each plate was imaged after 0 and 18 h of incubation, and colonies were enumerated by color using the WASPLab software and a technologist's reading from a high-definition (HD) monitor. The results were reported as negative if <10 colonies/plate were detected. Laboratory information system (LIS) time stamps were used to measure the time to result. A total of 1,581 urine cultures were tested. The sensitivity and specificity of the software were 99.8% and 68.5%, respectively, which included 2 manual-positive/automation-negative (MP/AN) results and 170 manual-negative/automation-positive (MN/AP) results. Of the 170 MN/AP specimens, 116 were caused by microcolonies missed by the technologist. The remaining MN/AP results were caused by either count differences near the 10-colony threshold (n = 43) or count differences of >50 CFU (n = 11). The use of both CPSE agar and the WASPLab software improved the time to result for urine culture, reducing the average time to result by 4 h 42 min for negative specimens and 3 h 28 min for positive specimens compared to that with standard-of-care testing. These data demonstrate that the use of CPSE agar and automated plate reading has the potential to improve turnaround time while maintaining high sensitivity and reducing urine culture workload.


Subject(s)
Automation, Laboratory , Bacteriological Techniques , Software , Urinalysis/methods , Chromogenic Compounds , Culture Media , Humans , Reproducibility of Results , Sensitivity and Specificity , Urinalysis/standards , Urinary Tract Infections/diagnosis , Urinary Tract Infections/microbiology
11.
J Clin Microbiol ; 57(7)2019 07.
Article in English | MEDLINE | ID: mdl-31043466

ABSTRACT

Sepsis is a major source of mortality and morbidity globally. Accurately diagnosing sepsis remains challenging due to the heterogeneous nature of the disease, and delays in diagnosis and intervention contribute to high mortality rates. Measuring the host response to infection enables more rapid diagnosis of sepsis than is possible through direct detection of the causative pathogen, and recent advances in host response diagnostics and prognostics hold promise for improving outcomes. The current review discusses recent advances in the technologies used to probe the host response to infection, particularly those based on transcriptomics. These are discussed in the context of contemporary approaches to diagnosing and prognosing sepsis, and recommendations are made for successful development and validation of host response technologies.


Subject(s)
Sepsis/diagnosis , Biomarkers/analysis , Gene Expression Profiling , Humans , Inflammation , Leukocytes/metabolism , Molecular Diagnostic Techniques , Prognosis , Sepsis/genetics , Sepsis/immunology
12.
J Clin Microbiol ; 57(11)2019 11.
Article in English | MEDLINE | ID: mdl-31484700

ABSTRACT

The prevalence of tick-borne infections has been steadily increasing in both number and geographic distribution in the United States and abroad. This increase, in conjunction with the continued recognition of novel pathogens transmitted by ticks, has made accurate diagnosis of these infections challenging. Mainstay serologic tests are insensitive during the acute phase of infection and are often cross-reactive with similar pathogenic and nonpathogenic organisms. Further, they are unable to reliably differentiate active versus past infection which can lead to misdiagnosis and incorrect understanding of the epidemiology and incidence of specific tick-borne pathogens. We evaluated a novel multiplexed high-definition PCR (HDPCR) Tickborne Panel (TBP) assay (ChromaCode, Carlsbad, CA) for the detection of nine tick-borne pathogens or groups associated with human illness. The HDPCR technology enables multiplex identification of multiple targets in a single fluorometric channel based on fluorescent signal modulation using a limiting probe design. A collection of 530 whole-blood specimens collected from patients being evaluated for tick-borne infections, in addition to a panel of 93 simulated specimens, were used to challenge the HDPCR TBP. The results were compared to a clinically validated traditional multiplexed PCR test with additional sequence analysis and clinical history collected to aid in resolving discrepancies. Among clinical specimens the TBP demonstrated 100% sensitivity for the identification of Anaplasma phagocytophilum, Borrelia miyamotoi, Borrelia mayonii, and Rickettsia rickettsii The sensitivity for identification of B. burgdorferi was 44.4% compared to a composite gold standard. Among simulated specimens containing single or multiple targets present at 103 to 105 copies/PCR, the sensitivity of TBP was 100% for all targets, with a combined specificity of 99.5%. Of note, an increased rate of false-positive results was observed among simulated specimens that contained multiple targets. Based on these data, we find the HDPCR TBP to be a useful adjunct for the diagnosis of tick-borne infections in patients with suspected tick-borne illness.


Subject(s)
Bacteria/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Tick-Borne Diseases/blood , Tick-Borne Diseases/diagnosis , Bacteria/pathogenicity , Bacterial Proteins/genetics , False Positive Reactions , Fluorescence , Fluorescent Dyes , Humans , Sensitivity and Specificity
13.
Clin Chem ; 65(5): 634-643, 2019 05.
Article in English | MEDLINE | ID: mdl-30518664

ABSTRACT

BACKGROUND: Historically, culture-based microbiology laboratory testing has relied on manual methods, and automated methods (such as those that have revolutionized clinical chemistry and hematology over the past several decades) were largely absent from the clinical microbiology laboratory. However, an increased demand for microbiology testing and standardization of sample-collection devices for microbiology culture, as well as a dwindling supply of microbiology technologists, has driven the adoption of automated methods for culture-based laboratory testing in clinical microbiology. CONTENT: We describe systems currently enabling total laboratory automation (TLA) for culture-based microbiology testing. We describe the general components of a microbiology automation system and the various functions of these instruments. We then introduce the 2 most widely used systems currently on the market: Becton Dickinson's Kiestra TLA and Copan's WASPLab. We discuss the impact of TLA on metrics such as turnaround time and recovery of microorganisms, providing a review of the current literature and perspectives from laboratory directors, managers, and technical staff. Finally, we provide an outlook for future advances in TLA for microbiology with a focus on artificial intelligence for automated culture interpretation. SUMMARY: TLA is playing an increasingly important role in clinical microbiology. Although challenges remain, TLA has great potential to affect laboratory efficiency, turnaround time, and the overall quality of culture-based microbiology testing.


Subject(s)
Microbiological Techniques/instrumentation , Automation , Colony Count, Microbial , Efficiency, Organizational , Humans , Laboratories/organization & administration , Microbial Sensitivity Tests , Time and Motion Studies
15.
J Clin Microbiol ; 56(9)2018 09.
Article in English | MEDLINE | ID: mdl-29899000

ABSTRACT

The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections.


Subject(s)
Bacteremia/diagnosis , Bacteriological Techniques/methods , Drug Resistance, Bacterial/genetics , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacterial Infections/diagnosis , Molecular Diagnostic Techniques/methods , Bacteremia/microbiology , Bacteriological Techniques/standards , Blood Culture , Genes, Bacterial/genetics , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Gram-Positive Bacterial Infections/microbiology , Humans , Molecular Diagnostic Techniques/standards , Polymerase Chain Reaction/standards
16.
J Clin Microbiol ; 56(4)2018 04.
Article in English | MEDLINE | ID: mdl-29305546

ABSTRACT

We describe results from a multicenter study evaluating the Accelerate Pheno system, a first of its kind diagnostic system that rapidly identifies common bloodstream pathogens from positive blood cultures within 90 min and determines bacterial phenotypic antimicrobial susceptibility testing (AST) results within ∼7 h. A combination of fresh clinical and seeded blood cultures were tested, and results from the Accelerate Pheno system were compared to Vitek 2 results for identification (ID) and broth microdilution or disk diffusion for AST. The Accelerate Pheno system accurately identified 14 common bacterial pathogens and two Candida spp. with sensitivities ranging from 94.6 to 100%. Of fresh positive blood cultures, 89% received a monomicrobial call with a positive predictive value of 97.3%. Six common Gram-positive cocci were evaluated for ID. Five were tested against eight antibiotics, two resistance phenotypes (methicillin-resistant Staphylococcus aureus and Staphylococcus spp. [MRSA/MRS]), and inducible clindamycin resistance (MLSb). From the 4,142 AST results, the overall essential agreement (EA) and categorical agreement (CA) were 97.6% and 97.9%, respectively. Overall very major error (VME), major error (ME), and minor error (mE) rates were 1.0%, 0.7%, and 1.3%, respectively. Eight species of Gram-negative rods were evaluated against 15 antibiotics. From the 6,331 AST results, overall EA and CA were 95.4% and 94.3%, respectively. Overall VME, ME, and mE rates were 0.5%, 0.9%, and 4.8%, respectively. The Accelerate Pheno system has the unique ability to identify and provide phenotypic MIC and categorical AST results in a few hours directly from positive blood culture bottles and support accurate antimicrobial adjustment.


Subject(s)
Blood Culture/methods , Microbial Sensitivity Tests/methods , Phenotype , Reagent Kits, Diagnostic/statistics & numerical data , Anti-Bacterial Agents/pharmacology , Blood Culture/instrumentation , Disk Diffusion Antimicrobial Tests/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/blood , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/blood , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
J Clin Microbiol ; 55(12): 3328-3338, 2017 12.
Article in English | MEDLINE | ID: mdl-28855303

ABSTRACT

Early initiation of effective antibiotics for septic patients is essential for patient survival. Matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology for isolate identification and has the possibility to impact how blood culture testing is performed. This review discusses the various uses of MALDI-TOF MS for the identification and susceptibility testing of positive blood cultures, the performance of these methods, and the outcomes involved with its implementation.


Subject(s)
Bacteria/isolation & purification , Blood Culture/methods , Microbial Sensitivity Tests/methods , Sepsis/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/classification , Bacteria/drug effects , Humans
19.
J Clin Microbiol ; 55(10): 3123-3129, 2017 10.
Article in English | MEDLINE | ID: mdl-28794179

ABSTRACT

Liquid-based microbiology (LBM) devices incorporating flocked swabs and preservation medium ease transport of specimens and improve specimen yield compared to traditional fiber wound swabs; however, the performance of LBM collection devices has not been evaluated in many molecular assays. It is unclear how the differences in matrix and specimen loading with an LBM device will affect test performance compared to traditional collection devices. The purpose of this study was to evaluate the performance of specimens collected in FecalSwab transport medium (Copan Diagnostics, Murrieta, CA) compared to unpreserved stool using the Cepheid Xpert C. difficile assay (Cepheid, Sunnyvale, CA). Results equivalent to unpreserved stool samples were obtained when 400 µl of FecalSwab-preserved stool was employed in the Xpert assay. The positive and negative percent agreement of specimens inoculated with FecalSwab medium (n = 281) was 97.0% (95% confidence interval [CI], 90.9 to 96.4%) and 99.4% (95% CI, 96.4 to 99.9%), respectively, compared to reference results obtained using unpreserved stool. Throughout this study, only four discrepant results occurred when comparing preserved specimens to unpreserved stool specimens in the Xpert C. difficile PCR assay. Post discrepant analysis, using the BD MAX Cdiff assay, the specificity and sensitivity both increased to 100%. The high positive and negative percent agreements observed in this study suggest that stool preserved in FecalSwab media yields equivalent results to using unpreserved stool when tested on the Xpert C. difficile assay, allowing laboratories to adopt this liquid-based microbiology collection device.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Molecular Diagnostic Techniques/methods , Preservation, Biological/methods , Specimen Handling/methods , Bacterial Toxins/analysis , Clostridium Infections/microbiology , Enterotoxins/analysis , Feces/microbiology , Humans , Sensitivity and Specificity
20.
J Clin Microbiol ; 55(4): 1140-1146, 2017 04.
Article in English | MEDLINE | ID: mdl-28122871

ABSTRACT

Bloodstream infections are a leading cause of morbidity and mortality in the United States and are associated with increased health care costs. We evaluated the Portrait Staph ID/R blood culture panel (BCP) multiplex PCR assay (Great Basin Scientific, Salt Lake City, UT) for the rapid and simultaneous identification (ID) of Staphylococcus aureus, Staphylococcus lugdunensis, and Staphylococcus species to the genus level and the detection of the mecA gene directly from a positive blood culture bottle. A total of 765 Bactec bottles demonstrating Gram-positive cocci in singles or clusters were tested during the prospective trial at 3 clinical sites. The Portrait Staph ID/R BCP results were compared with results from conventional biochemical and cefoxitin disk methods performed at an independent laboratory. Discordant ID and mecA results were resolved by rpoB gene sequencing and mecA gene sequencing, respectively. A total of 658 Staphylococcus species isolates (S. aureus, 211 isolates; S. lugdunensis, 3 isolates; and Staphylococcus spp., 444 isolates) were recovered from monomicrobial and 33 polymicrobial blood cultures. After discrepant analysis, the overall ratios of Portrait Staph ID/R BCP positive percent agreement and negative percent agreement were 99.4%/99.9% for Staphylococcus ID and 99.7%/99.2% for mecA detection.


Subject(s)
Blood Culture/methods , Genes, Bacterial , Methicillin Resistance , Multiplex Polymerase Chain Reaction/methods , Staphylococcal Infections/diagnosis , Staphylococcus/classification , Staphylococcus/isolation & purification , Humans , Prospective Studies , Staphylococcal Infections/microbiology , Staphylococcus/genetics , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL