Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Drug Metab Dispos ; 52(5): 377-389, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38438166

ABSTRACT

The determination of metabolic stability is critical for drug discovery programs, allowing for the optimization of chemical entities and compound prioritization. As such, it is common to perform high-volume in vitro metabolic stability experiments early in the lead optimization process to understand metabolic liabilities. Additional metabolite identification experiments are subsequently performed for a more comprehensive understanding of the metabolic clearance routes to aid medicinal chemists in the structural design of compounds. Collectively, these experiments require extensive sample preparation and a substantial amount of time and resources. To overcome the challenges, a high-throughput integrated assay for simultaneous hepatocyte metabolic stability assessment and metabolite profiling was developed. This assay platform consists of four parts: 1) an automated liquid-handling system for sample preparation and incubation, 2) a liquid chromatography and high-resolution mass spectrometry-based system to simultaneously monitor the parent compound depletion and metabolite formation, 3) an automated data analysis and report system for hepatic clearance assessment; and 4) streamlined autobatch processing for software-based metabolite profiling. The assay platform was evaluated using eight control compounds with various metabolic rates and biotransformation routes in hepatocytes across three species. Multiple sample preparation and data analysis steps were evaluated and validated for accuracy, repeatability, and metabolite coverage. The combined utility of an automated liquid-handling instrument, a high-resolution mass spectrometer, and multiple streamlined data processing software improves the process of these highly demanding screening assays and allows for simultaneous determination of metabolic stability and metabolite profiles for more efficient lead optimization during early drug discovery. SIGNIFICANCE STATEMENT: Metabolic stability assessment and metabolite profiling are pivotal in drug discovery to fully comprehend metabolic liabilities for chemical entity optimization and lead selection. Process of these assays can be repetitive and resource demanding. Here, we developed an integrated hepatocyte stability assay that combines automation, high-resolution mass spectrometers, and batch-processing software to improve and combine the workflow of these assays. The integrated approach allows simultaneous metabolic stability assessment and metabolite profiling, significantly accelerating screening and lead optimization in a resource-effective manner.


Subject(s)
Hepatocytes , Software , Chromatography, Liquid/methods , Mass Spectrometry , Automation
2.
Blood ; 137(20): 2838-2847, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33824972

ABSTRACT

Thromboembolic events, including venous thromboembolism (VTE) and arterial thromboembolism (ATE), and mortality from subclinical thrombotic events occur frequently in coronavirus disease 2019 (COVID-19) inpatients. Whether the risk extends postdischarge has been controversial. Our prospective registry included consecutive patients with COVID-19 hospitalized within our multihospital system from 1 March to 31 May 2020. We captured demographics, comorbidities, laboratory parameters, medications, postdischarge thromboprophylaxis, and 90-day outcomes. Data from electronic health records, health informatics exchange, radiology database, and telephonic follow-up were merged. Primary outcome was a composite of adjudicated VTE, ATE, and all-cause mortality (ACM). Principal safety outcome was major bleeding (MB). Among 4906 patients (53.7% male), mean age was 61.7 years. Comorbidities included hypertension (38.6%), diabetes (25.1%), obesity (18.9%), and cancer history (13.1%). Postdischarge thromboprophylaxis was prescribed in 13.2%. VTE rate was 1.55%; ATE, 1.71%; ΑCM, 4.83%; and MB, 1.73%. Composite primary outcome rate was 7.13% and significantly associated with advanced age (odds ratio [OR], 3.66; 95% CI, 2.84-4.71), prior VTE (OR, 2.99; 95% CI, 2.00-4.47), intensive care unit (ICU) stay (OR, 2.22; 95% CI, 1.78-2.93), chronic kidney disease (CKD; OR, 2.10; 95% CI, 1.47-3.0), peripheral arterial disease (OR, 2.04; 95% CI, 1.10-3.80), carotid occlusive disease (OR, 2.02; 95% CI, 1.30-3.14), IMPROVE-DD VTE score ≥4 (OR, 1.51; 95% CI, 1.06-2.14), and coronary artery disease (OR, 1.50; 95% CI, 1.04-2.17). Postdischarge anticoagulation was significantly associated with reduction in primary outcome (OR, 0.54; 95% CI, 0.47-0.81). Postdischarge VTE, ATE, and ACM occurred frequently after COVID-19 hospitalization. Advanced age, cardiovascular risk factors, CKD, IMPROVE-DD VTE score ≥4, and ICU stay increased risk. Postdischarge anticoagulation reduced risk by 46%.


Subject(s)
COVID-19/complications , Thromboembolism/epidemiology , Thromboembolism/etiology , Aged , Anticoagulants/therapeutic use , Female , Humans , Male , Middle Aged , Patient Discharge , Registries , Risk Factors , SARS-CoV-2 , Thromboembolism/prevention & control
3.
Proc Natl Acad Sci U S A ; 117(36): 22462-22472, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839311

ABSTRACT

Huntingtin-interacting protein family members are evolutionarily conserved from yeast to humans, and they are known to be key factors in clathrin-mediated endocytosis. Here we identified the Caenorhabditis elegans protein huntingtin-interacting protein-related 1 (HIPR-1) as a host factor essential for Orsay virus infection of C. elegans Ablation of HIPR-1 resulted in a greater than 10,000-fold reduction in viral RNA, which could be rescued by ectopic expression of HIPR-1. Viral RNA replication from an endogenous transgene replicon system was not affected by lack of HIPR-1, suggesting that HIPR-1 plays a role during an early, prereplication virus life-cycle stage. Ectopic expression of HIPR-1 mutants demonstrated that neither the clathrin light chain-binding domain nor the clathrin heavy chain-binding motif were needed for virus infection, whereas the inositol phospholipid-binding and F-actin-binding domains were essential. In human cell culture, deletion of the human HIP orthologs HIP1 and HIP1R led to decreased infection by Coxsackie B3 virus. Finally, ectopic expression of a chimeric HIPR-1 harboring the human HIP1 ANTH (AP180 N-terminal homology) domain rescued Orsay infection in C. elegans, demonstrating conservation of its function through evolution. Collectively, these findings further our knowledge of cellular factors impacting viral infection in C. elegans and humans.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Microfilament Proteins/metabolism , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/virology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Conserved Sequence/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Enterovirus B, Human/pathogenicity , Enterovirus B, Human/physiology , Female , Gene Knockdown Techniques , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Male , Microfilament Proteins/genetics , Microfilament Proteins/physiology , Nodaviridae/pathogenicity , Nodaviridae/physiology , Protein Domains/genetics , Virus Replication
4.
Drug Metab Dispos ; 2022 May 30.
Article in English | MEDLINE | ID: mdl-35636770

ABSTRACT

The utilization of in vitro data to predict drug pharmacokinetics (PK) in vivo has been a consistent practice in early drug discovery for decades. However, its success is hampered by mispredictions attributed to uncharacterized biological phenomena/experimental artifacts. Predicted drug clearance (CL) from experimental data (i.e. hepatocyte intrinsic clearance: CLint, fraction unbound in plasma: fu,p) is often systematically underpredicted using the well-stirred model (WSM). The objective of this study was to evaluate using empirical scalars in the WSM to correct for CL mispredictions. Drugs (N=28) were used to generate numerical scalars on CLint (α), and fu,p (ß) to minimize the error (AAFE) for CL predictions. These scalars were validated using an additional dataset (N=28 drugs) and applied to a non-redundant AstraZeneca (AZ) dataset available in the literature (N=117 drugs) for a total of 173 compounds. CL predictions using the WSM were improved for most compounds using an α value of 3.66 (~64%<2-fold) compared to no scaling (~46%<2-fold). Similarly, using a ß value of 0.55 or combination of α and ß scalars (values of 1.74 and 0.66, respectively) resulted in a similar improvement in predictions (~64%<2-fold and ~65%<2-fold, respectively). For highly bound compounds (fu,p{less than or equal to}0.01), AAFE was substantially reduced across all scaling methods. Using the ß scalar alone or a combination of α and ß appeared optimal; and produce larger magnitude corrections for highly-bound compounds. Some drugs are still disproportionally mispredicted, however the improvements in prediction error and simplicity of applying these scalars suggests its utility for early-stage CL predictions. Significance Statement In early drug discovery, prediction of human clearance using in vitro experimental data plays an essential role in triaging compounds prior to in vivo studies. These predictions have been systematically underestimated. Here we introduce empirical scalars calibrated on the extent of plasma protein binding that appear to improve clearance prediction across multiple datasets. This approach can be used in early phases of drug discovery prior to the availability of pre-clinical data for early quantitative predictions of human clearance.

5.
J Pharm Sci ; 109(10): 3181-3189, 2020 10.
Article in English | MEDLINE | ID: mdl-32663597

ABSTRACT

Determination of free drug fraction (fu) in plasma can be challenging for labile covalent modulators due to the off-target reactivity of chemical warheads to matrix proteins. The resulting poor drug recovery yields low confidence in fu. Two approaches using diluted plasma and low temperature (4 & 20 °C) for equilibrium dialysis (ED) have been investigated using covalent modulators including osimertinib, ibrutinib, rociletinib, afatinib, neratinib and acalabrutinib. Our data indicate that stability of covalent modulators in plasma varies in different species, and drug depletion may lead to overestimation of fu if true equilibrium is not reached. Additionally, although ED at low temperature improves the recovery of covalent modulators, the impact of low temperature may lead to underestimate of fu. Overall, ED using diluted plasma is a preferred method because of its faster equilibrium, improved recovery and free of temperature effect on fu. If low temperature ED must be used for extremely labile compounds, precaution must be taken to ensure no temperature dependence of fu in plasma. Nevertheless, an orthogonal ED approach is recommended for labile covalent modulators to confirm the true equilibrium and impact of temperature on fu. Additionally, this strategy can be used for determining fu of other liable compounds.


Subject(s)
Pharmaceutical Preparations , Renal Dialysis , Blood Proteins/metabolism , Dialysis , Humans , Plasma/metabolism , Protein Binding
6.
Elife ; 82019 11 26.
Article in English | MEDLINE | ID: mdl-31769754

ABSTRACT

Comprehensive knowledge of the host factors required for picornavirus infection would facilitate antiviral development. Here we demonstrate roles for three human genes, TNK2, WASL, and NCK1, in infection by multiple picornaviruses. CRISPR deletion of TNK2, WASL, or NCK1 reduced encephalomyocarditis virus (EMCV), coxsackievirus B3 (CVB3), poliovirus and enterovirus D68 infection, and chemical inhibitors of TNK2 and WASL decreased EMCV infection. Reduced EMCV lethality was observed in mice lacking TNK2. TNK2, WASL, and NCK1 were important in early stages of the viral lifecycle, and genetic epistasis analysis demonstrated that the three genes function in a common pathway. Mechanistically, reduced internalization of EMCV was observed in TNK2 deficient cells demonstrating that TNK2 functions in EMCV entry. Domain analysis of WASL demonstrated that its actin nucleation activity was necessary to facilitate viral infection. Together, these data support a model wherein TNK2, WASL, and NCK1 comprise a pathway important for multiple picornaviruses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Host-Pathogen Interactions , Oncogene Proteins/metabolism , Picornaviridae/growth & development , Protein-Tyrosine Kinases/metabolism , Virus Internalization , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Animals , Cardiovirus Infections/pathology , Cell Line , Disease Models, Animal , Gene Deletion , Humans , Mice, Knockout , Oncogene Proteins/deficiency , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/deficiency , Survival Analysis , Wiskott-Aldrich Syndrome Protein, Neuronal/antagonists & inhibitors , Wiskott-Aldrich Syndrome Protein, Neuronal/deficiency
7.
Nat Struct Mol Biol ; 25(9): 778-786, 2018 09.
Article in English | MEDLINE | ID: mdl-30104661

ABSTRACT

RNA viruses are a major threat to animals and plants. RNA interference (RNAi) and the interferon response provide innate antiviral defense against RNA viruses. Here, we performed a large-scale screen using Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV), and we identified cde-1 as important for antiviral defense. CDE-1 is a homolog of the mammalian TUT4 and TUT7 terminal uridylyltransferases (collectively called TUT4(7)); its catalytic activity is required for its antiviral function. CDE-1 uridylates the 3' end of the OrV RNA genome and promotes its degradation in a manner independent of the RNAi pathway. Likewise, TUT4(7) enzymes uridylate influenza A virus (IAV) mRNAs in mammalian cells. Deletion of TUT4(7) leads to increased IAV mRNA and protein levels. Collectively, these data implicate 3'-terminal uridylation of viral RNAs as a conserved antiviral defense mechanism.


Subject(s)
Caenorhabditis elegans/enzymology , Caenorhabditis elegans/virology , Immunity, Innate , RNA Nucleotidyltransferases/metabolism , RNA Viruses/metabolism , A549 Cells , Animals , Caenorhabditis elegans/genetics , Humans , RNA Interference , RNA Viruses/immunology , RNA Viruses/physiology , RNA, Viral/metabolism , Transcriptome , Virus Replication
8.
mBio ; 8(5)2017 09 05.
Article in English | MEDLINE | ID: mdl-28874467

ABSTRACT

Many fundamental biological discoveries have been made in Caenorhabditis elegans The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP) reporter. Following chemical mutagenesis, two Viro (virus induced reporter off) mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2), an ortholog of human Wiskott-Aldrich syndrome protein (WASP). Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2), is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans A targeted RNA interference (RNAi) knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway.IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/virology , Evolution, Molecular , Nodaviridae/physiology , Virus Replication , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Green Fluorescent Proteins/genetics , Host-Pathogen Interactions , Mutagenesis , Nodaviridae/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA Interference , RNA, Viral/genetics , Virus Diseases , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL