Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Biol Chem ; 288(34): 24382-93, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23846685

ABSTRACT

Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Movement/physiology , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinase C/metabolism , Signal Transduction/physiology , Actins/genetics , Actins/metabolism , Cell Adhesion Molecules/genetics , Focal Adhesions/genetics , Focal Adhesions/metabolism , HeLa Cells , Humans , Microfilament Proteins/genetics , Phosphoproteins/genetics , Phosphorylation/physiology , Protein Kinase C/genetics , Protein Transport/physiology , Pseudopodia/genetics , Pseudopodia/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
3.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902234

ABSTRACT

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Astrocytes , Blood-Brain Barrier , Pericytes , Smad3 Protein , Vascular Endothelial Growth Factor A , Zebrafish , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Astrocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Pericytes/metabolism , Pericytes/pathology , Male , Induced Pluripotent Stem Cells/metabolism , Female , Aged , Transcriptome , Brain/metabolism , Brain/pathology , Brain/blood supply , Aged, 80 and over , Disease Models, Animal
4.
Biochim Biophys Acta ; 1826(1): 23-31, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22440943

ABSTRACT

In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial-mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible "mesenchymal to epithelial transition" (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.


Subject(s)
Cadherins/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Cadherins/metabolism , Cell Line, Tumor , Disease Progression , Humans , Neoplasms/metabolism , Signal Transduction
5.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37427593

ABSTRACT

Glioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic xenografts derived from patients with GBM. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due, at least in part, to increased phosphorylation, cytoplasmic retention, and reduced activity of the YAP/TAZ transcriptional coactivators. Furthermore, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells, irrespective of their inherent response to TMZ. The data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Cell Line, Tumor , Signal Transduction , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Damage , Cell Division
6.
Stem Cell Res Ther ; 14(1): 214, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37605285

ABSTRACT

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS: We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/ß-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.


Subject(s)
Apolipoproteins E , Cerebrum , Induced Pluripotent Stem Cells , Humans , Apolipoprotein E4 , Apolipoproteins E/genetics , Cell Differentiation , Organoids , Cerebrum/metabolism
7.
Autophagy ; 19(6): 1711-1732, 2023 06.
Article in English | MEDLINE | ID: mdl-36469690

ABSTRACT

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Subject(s)
Parkinson Disease , Protein Kinases , Humans , Protein Kinases/genetics , Protein Kinases/metabolism , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy , Ubiquitin/metabolism
8.
Aging Cell ; 21(5): e13606, 2022 05.
Article in English | MEDLINE | ID: mdl-35388616

ABSTRACT

Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Microglia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcriptome/genetics
9.
Cell Rep ; 34(11): 108843, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730588

ABSTRACT

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , tau Proteins/metabolism , Antibodies/metabolism , Brain/metabolism , Brain/pathology , Corticobasal Degeneration/pathology , Humans , Pick Disease of the Brain/pathology , Protein Aggregates , Time Factors , tau Proteins/cerebrospinal fluid , tau Proteins/ultrastructure
10.
Mol Cell Biol ; 27(6): 2266-82, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17242213

ABSTRACT

Human glucocorticoid receptor (hGR) is expressed as two alternately spliced C-terminal isoforms, alpha and beta. In contrast to the canonical hGRalpha, hGRbeta is a nucleus-localized orphan receptor thought not to bind ligand and not to affect gene transcription other than by acting as a dominant negative to hGRalpha. Here we used confocal microscopy to examine the cellular localization of transiently expressed fluorescent protein-tagged hGRbeta in COS-1 and U-2 OS cells. Surprisingly, yellow fluorescent protein (YFP)-hGRbeta was predominantly located in the cytoplasm and translocated to the nucleus following application of the glucocorticoid antagonist RU-486. This effect of RU-486 was confirmed with transiently expressed wild-type hGRbeta. Confocal microscopy of coexpressed YFP-hGRbeta and cyan fluorescent protein-hGRalpha in COS-1 cells indicated that the receptors move into the nucleus independently. Using a ligand binding assay, we confirmed that hGRbeta bound RU-486 but not the hGRalpha ligand dexamethasone. Examination of the cellular localization of YFP-hGRbeta in response to a series of 57 related compounds indicated that RU-486 is thus far the only identified ligand that interacts with hGRbeta. The selective interaction of RU-486 with hGRbeta was also supported by molecular modeling and computational docking studies. Interestingly, microarray analysis indicates that hGRbeta, expressed in the absence of hGRalpha, can regulate gene expression and furthermore that occupation of hGRbeta with the antagonist RU-486 diminishes that capacity despite the lack of helix 12 in the ligand binding domain.


Subject(s)
Mifepristone/chemistry , Mifepristone/pharmacology , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Animals , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Humans , Ligands , Mifepristone/metabolism , Models, Molecular , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Protein Transport , Receptors, Glucocorticoid/genetics
11.
Blood Adv ; 4(10): 2143-2157, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32421811

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]-like CLL cells) produce high amounts of IL-10 and transforming growth factor ß (TGF-ß) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-ß-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL-patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Subject(s)
B-Lymphocytes, Regulatory , Leukemia, Lymphocytic, Chronic, B-Cell , CD8-Positive T-Lymphocytes , Humans , Immunosuppressive Agents , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , T-Lymphocytes, Regulatory , Tumor Microenvironment
12.
Acta Neuropathol Commun ; 7(1): 36, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30845985

ABSTRACT

Tauopathies are neurodegenerative disorders characterized by aggregation of microtubule associated tau protein in neurons and glia. They are clinically and pathologically heterogeneous depending on the isoform of tau protein that accumulates (three or four 31-to-32-amino-acid repeats [3R or 4R] in the microtubule binding domain), as well as the cellular and neuroanatomical distribution of tau pathology. Growing evidence suggests that distinct tau conformers may contribute to the characteristic features of various tauopathies. Globular glial tauopathy (GGT) is a rare 4R tauopathy with globular cytoplasmic inclusions within neurons and glial cells. Given the unique cellular distribution and morphology of tau pathology in GGT, we sought to determine if tau species in GGT had distinctive biological properties. To address this question, we performed seeding analyses with postmortem brain tissues using a commercial tau biosensor cell line. We found that brain lysates from GGT cases had significantly higher seeding competency than other tauopathies, including corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). The robust seeding activity of GGT brain lysates was independent of phosphorylated tau burden and diminished upon removal of tau from samples, suggesting that seeding properties were indeed mediated by tau in the lysates. In addition, cellular inclusions in the tau biosensor cell line induced by GGT had a distinct, globular morphology that was markedly different from inclusions induced by other tauopathies, further highlighting the unique nature of tau species in GGT. Characterization of different tau species in GGT showed that detergent-insoluble, fibril-like tau contained the highest seeding activity, as reflected in its ability to increase tau aggregation in primary glial cultures. Taken together, our data suggest that unique seeding properties differentiate GGT-tau from other tauopathies, which provides new insight into pathogenic heterogeneity of primary neurodegenerative tauopathies.


Subject(s)
Brain/metabolism , Neuroglia/metabolism , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Animals , Brain/pathology , Brain Chemistry/physiology , Female , HEK293 Cells , Humans , Male , Mice , Middle Aged , Neuroglia/chemistry , Neuroglia/pathology , Neurons/chemistry , Neurons/pathology , Tauopathies/pathology , tau Proteins/analysis
13.
Ann N Y Acad Sci ; 1069: 1-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16855130

ABSTRACT

The development of glucocorticoid (GC) resistance is a serious problem that complicates the treatment of immune-related diseases, such as asthma, ulcerative colitis, and hematologic cancers. hGRalpha and hGRbeta are two isoforms of the human glucocorticoid receptor, which differ in the structural composition of the carboxy-terminal end of the ligand-binding domain and therefore in their ability to bind glucocorticoid ligand and in their physiological function. hGRalpha is the classically functional GR, while hGRbeta seems to act mainly as a dominant negative to the function of hGRalpha. Because of the ability of hGRbeta to antagonize the action of hGRalpha, it has been hypothesized that changes in the expression of hGRbeta may underlie the development of glucocorticoid resistance. In this article we review what is known about the expression and physiological action of hGRbeta in normal cells and tissue as well as in several disease states. Taken together, the evidence suggests that the ratio of hGRalpha:hGRbeta expression is indeed critical to the glucocorticoid responsiveness of various cells. This ratio can be altered by changing the expression level of hGRalpha, hGRbeta, or both receptors simultaneously. Higher ratios correlate with glucocorticoid sensitivity, while lower ratios correlate with glucocorticoid resistance. Thus hGRbeta can be an important modulator of glucocorticoid responsiveness.


Subject(s)
Drug Resistance/drug effects , Drug Resistance/physiology , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/metabolism , Animals , Disease , Gene Expression Regulation , Humans , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics
14.
Mol Endocrinol ; 19(6): 1501-15, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15705660

ABSTRACT

The association between nuclear distribution and mobility of the human glucocorticoid receptor was examined in living COS-1 cells using yellow fluorescent protein- and cyan fluorescent protein-tagged receptors. Quantitation of the nuclear distribution induced by an array of glucocorticoid ligands revealed a continuum from a random (cortisone) to a nonrandom (triamcinolone acetonide) receptor distribution. Structure-function analysis revealed that the 9-fluoro and 17-hydroxy groups on the steroid significantly impact nuclear receptor distribution. Using time-lapse microscopy, the triamcinolone acetonide-induced receptor distribution did not change significantly over a period of 15 sec. However, using fluorescence recovery after photobleaching, the individual receptors moved at a much faster rate, indicating rapid exchange of receptors on immobile nuclear subdomains. Receptor mobilities for 13 different steroids, measured by fluorescence recovery after photobleaching, appeared to correlate with receptor distribution. Ligands that induced a nonrandom distribution induced slower receptor mobility and vice versa. Finally, application of 2-photon confocal microscopy revealed differences in receptor mobility between nuclear subdomains. Areas of high receptor concentration showed slower mobility than areas of low receptor concentration. Thus, glucocorticoid receptors can be targeted (depending on the ligand) to relatively immobile nuclear subdomains. The transient association of receptor with these domains decreases the mobility of the receptor.


Subject(s)
Receptors, Glucocorticoid/metabolism , Animals , Bacterial Proteins/metabolism , Binding, Competitive , COS Cells , Cell Nucleus/metabolism , Cortisone/pharmacology , Dose-Response Relationship, Drug , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/metabolism , Humans , Image Processing, Computer-Assisted , Ligands , Luminescent Proteins/metabolism , Microscopy, Confocal , Mutagenesis , Mutation , Photons , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , Software , Steroids/chemistry , Structure-Activity Relationship , Time Factors , Transfection , Triamcinolone Acetonide/pharmacology
15.
Mol Oncol ; 9(9): 1783-98, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26105207

ABSTRACT

Src-family kinase (SFK) signaling impacts multiple tumor-related properties, particularly in the context of the brain tumor glioblastoma. Consequently, the pan-SFK inhibitor dasatinib has emerged as a therapeutic strategy, despite physiologic limitations to its effectiveness in the brain. We investigated the importance of individual SFKs (Src, Fyn, Yes, and Lyn) to glioma tumor biology by knocking down individual SFK expression both in culture (LN229, SF767, GBM8) and orthotopic xenograft (GBM8) contexts. We evaluated the effects of these knockdowns on tumor cell proliferation, migration, and motility-related signaling in culture, as well as overall survival in the orthotopic xenograft model. The four SFKs differed significantly in their importance to these properties. In culture, Src, Fyn, and Yes knockdown generally reduced growth and migration and altered motility-related phosphorylation patterns while Lyn knockdown did so to a lesser extent. However the details of these effects varied significantly depending on the cell line: in no case were conclusions about the role of a particular SFK applicable to all of the measures or all of the cell types examined. In the orthotopic xenograft model, mice implanted with non-target or Src or Fyn knockdown cells showed no differences in survival. In contrast, mice implanted with Yes knockdown cells had longer survival, associated with reduced tumor cell proliferation. Those implanted with Lyn knockdown cells had shorter survival, associated with higher overall tumor burden. Together, our results suggest that Yes signaling directly affects tumor cell biology in a pro-tumorigenic manner, while Lyn signaling affects interactions between tumor cells and the microenvironment in an anti-tumor manner. In the context of therapeutic targeting of SFKs, these results suggest that pan-SFK inhibitors may not produce the intended therapeutic benefit when Lyn is present.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Dasatinib/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Protein Kinase Inhibitors/therapeutic use , src-Family Kinases/genetics , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dasatinib/pharmacology , Gene Knockdown Techniques , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Mice, Nude , Protein Kinase Inhibitors/pharmacology , src-Family Kinases/metabolism
16.
Mol Cell Biol ; 33(24): 4909-18, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126053

ABSTRACT

The role of RhoA in promoting directed cell migration has been complicated by studies showing that it is activated both in the front and the rear of migrating cells. We report here that the RhoA-specific guanine nucleotide exchange factor Syx is required for the polarity of actively migrating brain and breast tumor cells. This function of Syx is mediated by the selective activation of the RhoA downstream effector Dia1, the subsequent reorganization of microtubules, and the downregulation of focal adhesions and actin stress fibers. The data argue that directed cell migration requires the precise spatiotemporal regulation of Dia1 and ROCK activities in the cell. The recruitment of Syx to the cell membrane and the subsequent selective activation of Dia1 signaling, coupled with the suppression of ROCK and activation of cofilin-mediated actin reorganization, plays a key role in establishing cell polarity during directed cell migration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Guanine Nucleotide Exchange Factors/physiology , rho-Associated Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Polarity , Cell Shape , Focal Adhesions/metabolism , Formins , Gene Knockdown Techniques , Humans , Microtubules/metabolism , Microtubules/ultrastructure , Phenotype , Protein Stability , Protein Transport , RNA, Small Interfering/genetics
17.
PLoS One ; 8(2): e56505, 2013.
Article in English | MEDLINE | ID: mdl-23457577

ABSTRACT

Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM). Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s) of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1) activation of Src family kinases (SFKs) is common in GBM, 2) the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3) SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Glioma/pathology , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Bevacizumab , Cell Line, Tumor , Cell Transformation, Neoplastic , Dasatinib , Enzyme Activation/drug effects , Humans , Mice , Neoplasm Invasiveness , Pyrimidines/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , src-Family Kinases/metabolism
18.
J Cell Biol ; 199(7): 1103-15, 2012 Dec 24.
Article in English | MEDLINE | ID: mdl-23253477

ABSTRACT

Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser(806), which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx(-/-) mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function.


Subject(s)
Angiopoietin-1/physiology , Guanine Nucleotide Exchange Factors/metabolism , Intercellular Junctions/metabolism , Vascular Endothelial Growth Factor A/physiology , Animals , Capillary Permeability , Carrier Proteins/metabolism , Dogs , Formins , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Madin Darby Canine Kidney Cells , Membrane Proteins , Mice , Mice, Knockout , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Stability , Protein Transport , RNA Interference , Signal Transduction , Stroke Volume , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
19.
PLoS One ; 5(10): e13665, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-21060868

ABSTRACT

BACKGROUND: Cadherins are essential components of the adherens junction complexes that mediate cell-cell adhesion and regulate cell motility. During tissue morphogenesis, changes in cadherin expression (known as cadherin switching) are a common mechanism for altering cell fate. Cadherin switching is also common during epithelial tumor progression, where it is thought to promote tumor invasion and metastasis. E-cadherin is the predominant cadherin expressed in epithelial tissues, but its expression is very limited in normal brain. METHODOLOGY/PRINCIPAL FINDINGS: We identified E-cadherin expression in a retrospective series of glioblastomas exhibiting epithelial or pseudoepithelial differentiation. Unlike in epithelial tissues, E-cadherin expression in gliomas correlated with an unfavorable clinical outcome. Western blotting of two panels of human GBM cell lines propagated either as xenografts in nude mice or grown under conventional cell culture conditions confirmed that E-cadherin expression is rare. However, a small number of xenograft lines did express E-cadherin, its expression correlating with increased invasiveness when the cells were implanted orthotopically in mouse brain. In the conventionally cultured SF767 glioma cell line, E-cadherin expression was localized throughout the plasma membrane rather than being restricted to areas of cell-cell contact. ShRNA knockdown of E-cadherin in these cells resulted in decreased proliferation and migration in vitro. CONCLUSIONS/SIGNIFICANCE: Our data shows an unexpected correlation between the abnormal expression of E-cadherin in a subset of GBM tumor cells and the growth and migration of this aggressive brain tumor subtype.


Subject(s)
Brain Neoplasms/metabolism , Cadherins/metabolism , Glioblastoma/metabolism , Animals , Blotting, Western , Brain Neoplasms/pathology , Cell Differentiation , Cell Division , Cell Line, Tumor , Glioblastoma/pathology , Humans , Immunohistochemistry , Mice , Mice, Nude , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous
20.
Mol Cell Neurosci ; 25(3): 536-47, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15033181

ABSTRACT

In neurons and neuroendocrine cells, tyrosine hydroxylase (TH) gene expression is induced by stimuli that elevate cAMP, by depolarization, and by hypoxia. Using these stimuli, we examined TH promoter mutants, cAMP response element binding protein (CREB) phosphorylation site mutants, and transcriptional interference with dominant negative transcription factors to assess the relative contributions of CREB/AP-1 family members to the regulation of basal and inducible TH transcription in PC12 cells. We found that basal transcription depends on transcription factor activity at the partial dyad (-17 bp), CRE (-45 bp), and AP1 (-205 bp) elements. Induced transcription is regulated primarily by activity at the CRE, with only small contributions from the AP1 or hypoxia response element 1 (HRE1; -225 bp) elements, regardless of inducing stimulus. CREB, ATF-1, and CREMtau all mediate CRE-dependent transcription, with CREB and CREMtau being more effective than ATF-1. Phosphorylation of CREB on Ser133, but not on Ser142 or Ser143, is required for induced transcription, regardless of inducing stimulus.


Subject(s)
Cyclic AMP Response Element-Binding Protein/biosynthesis , Transcription, Genetic/physiology , Tyrosine 3-Monooxygenase/biosynthesis , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cyclic AMP/pharmacology , Cyclic AMP Response Element-Binding Protein/genetics , PC12 Cells , Rats , Transcription, Genetic/drug effects , Tyrosine 3-Monooxygenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL