Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35483375

ABSTRACT

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Neoplasms/drug therapy , Neoplasms/pathology , Peptide Hydrolases , Receptors, Antigen, T-Cell , T-Lymphocytes/pathology
2.
Annu Rev Biochem ; 90: 475-501, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33781076

ABSTRACT

Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.


Subject(s)
Biochemistry/methods , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cryptochromes/chemistry , Cryptochromes/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Light , Optogenetics/methods , Photochemical Processes , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/metabolism , Phytochrome/chemistry , Phytochrome/metabolism , Protein Domains , Protein Engineering/methods , Vitamin B 12/metabolism
3.
Cell ; 179(7): 1590-1608.e23, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835034

ABSTRACT

Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.


Subject(s)
Brain/physiology , GTPase-Activating Proteins/genetics , Microscopy, Fluorescence, Multiphoton/methods , Optogenetics/methods , Theta Rhythm , Wakefulness , Action Potentials , Animals , Brain/metabolism , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Female , GTPase-Activating Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Rats , Rats, Sprague-Dawley , Running
4.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007418

ABSTRACT

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Subject(s)
Brain/metabolism , Gene Knockout Techniques/methods , Genes, Reporter , Animals , Brain/cytology , Calcium/metabolism , Cell Line , In Situ Hybridization, Fluorescence , Light , Mice , Mice, Transgenic , Microscopy, Fluorescence , Neurons/metabolism , Optogenetics , RNA, Untranslated/genetics , Transgenes/genetics
5.
Cell ; 166(1): 245-57, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27264607

ABSTRACT

A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.


Subject(s)
Drosophila/physiology , Neurons/metabolism , Visual Pathways , Animals , Calcium/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Kinetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurites/metabolism
6.
Cell ; 167(6): 1650-1662.e15, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912066

ABSTRACT

Electrophysiological field potential dynamics are of fundamental interest in basic and clinical neuroscience, but how specific cell types shape these dynamics in the live brain is poorly understood. To empower mechanistic studies, we created an optical technique, TEMPO, that records the aggregate trans-membrane voltage dynamics of genetically specified neurons in freely behaving mice. TEMPO has >10-fold greater sensitivity than prior fiber-optic techniques and attains the noise minimum set by quantum mechanical photon shot noise. After validating TEMPO's capacity to track established oscillations in the delta, theta, and gamma frequency bands, we compared the D1- and D2-dopamine-receptor-expressing striatal medium spiny neurons (MSNs), which are interspersed and electrically indistinguishable. Unexpectedly, MSN population dynamics exhibited two distinct coherent states that were commonly indiscernible in electrical recordings and involved synchronized hyperpolarizations across both MSN subtypes. Overall, TEMPO allows the deconstruction of normal and pathologic neurophysiological states into trans-membrane voltage activity patterns of specific cell types.


Subject(s)
Brain Waves , Mice/physiology , Neurophysiology/methods , Voltage-Sensitive Dye Imaging/methods , Animals , Female , Male , Mice, Inbred BALB C
7.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Article in English | MEDLINE | ID: mdl-37429962

ABSTRACT

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Subject(s)
Brain , Calcium , Animals , Mice , Lighting , Microscopy , Photons
8.
Nat Chem Biol ; 19(6): 731-739, 2023 06.
Article in English | MEDLINE | ID: mdl-36759751

ABSTRACT

Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.


Subject(s)
Diagnostic Imaging , Luminescent Measurements , Mice , Animals , Luminescent Measurements/methods , Brain/diagnostic imaging , Firefly Luciferin , Luciferins
9.
Nat Methods ; 17(9): 885-896, 2020 09.
Article in English | MEDLINE | ID: mdl-32661424

ABSTRACT

Sequence-specific proteases have proven to be versatile building blocks for tools that report or control cellular function. Reporting methods link protease activity to biochemical signals, whereas control methods rely on engineering proteases to respond to exogenous inputs such as light or chemicals. In turn, proteases have inherent control abilities, as their native functions are to release, activate or destroy proteins by cleavage, with the irreversibility of proteolysis allowing sustained downstream effects. As a result, protease-based synthetic circuits have been created for diverse uses such as reporting cellular signaling, tuning protein expression, controlling viral replication and detecting cancer states. Here, we comprehensively review the development and application of protease-based methods for reporting and controlling cellular function in eukaryotes.


Subject(s)
Eukaryota , Peptide Hydrolases/metabolism , Amino Acid Sequence , Animals , Cell Communication , Proteomics
10.
Nat Methods ; 17(3): 287-290, 2020 03.
Article in English | MEDLINE | ID: mdl-32123392

ABSTRACT

Understanding information processing in the brain requires monitoring neuronal activity at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence microscope empowered by all-optical laser scanning, we imaged neuronal activity in vivo at up to 3,000 frames per second and submicrometer spatial resolution. This imaging method enabled monitoring of both supra- and subthreshold electrical activity down to 345 µm below the brain surface in head-fixed awake mice.


Subject(s)
Brain/diagnostic imaging , Microscopy, Fluorescence, Multiphoton/methods , Neurons/physiology , Photons , Animals , Calcium/metabolism , Cells, Cultured , Computational Biology , Female , Glutamic Acid/metabolism , Lasers , Male , Membrane Potentials , Mice , Mice, Transgenic , Optics and Photonics , Rats , Software
11.
Nat Methods ; 17(8): 852-860, 2020 08.
Article in English | MEDLINE | ID: mdl-32661427

ABSTRACT

Sensitive detection of two biological events in vivo has long been a goal in bioluminescence imaging. Antares, a fusion of the luciferase NanoLuc to the orange fluorescent protein CyOFP, has emerged as a bright bioluminescent reporter with orthogonal substrate specificity to firefly luciferase (FLuc) and its derivatives such as AkaLuc. However, the brightness of Antares in mice is limited by the poor solubility and bioavailability of the NanoLuc substrate furimazine. Here, we report a new substrate, hydrofurimazine, whose enhanced aqueous solubility allows delivery of higher doses to mice. In the liver, Antares with hydrofurimazine exhibited similar brightness to AkaLuc with its substrate AkaLumine. Further chemical exploration generated a second substrate, fluorofurimazine, with even higher brightness in vivo. We used Antares with fluorofurimazine to track tumor size and AkaLuc with AkaLumine to visualize CAR-T cells within the same mice, demonstrating the ability to perform two-population imaging with these two luciferase systems.


Subject(s)
Furans/chemistry , Luciferases/chemistry , Luminescent Measurements/methods , Luminescent Proteins/chemistry , Animals , Enzyme Assays/methods , Substrate Specificity
12.
Nat Chem Biol ; 17(5): 540-548, 2021 05.
Article in English | MEDLINE | ID: mdl-33603247

ABSTRACT

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.


Subject(s)
Actinin/chemistry , Epithelial Cells/metabolism , Myosins/chemistry , Neurons/metabolism , Protein Engineering/methods , Spectrin/chemistry , Actinin/genetics , Actinin/metabolism , Animals , Avena , Cell Line , Chara , Chickens , Cloning, Molecular , Dictyostelium , Epithelial Cells/cytology , Epithelial Cells/radiation effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Humans , Light , Models, Molecular , Motion , Myosins/genetics , Myosins/metabolism , Neurons/cytology , Neurons/radiation effects , Optics and Photonics/methods , Primary Cell Culture , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spectrin/genetics , Spectrin/metabolism , Nicotiana
13.
J Integr Neurosci ; 22(6): 160, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38176939

ABSTRACT

BACKGROUND: Population voltage imaging is used for studying brain physiology and brain circuits. Using a genetically encoded voltage indicator (GEVI), "VSFP" or "ASAP2s", or a voltage-sensitive dye, Di-4-Anepps, we conducted population voltage imaging in brain slices. The resulting optical signals, optical local field potentials (LFPs), were used to evaluate the performances of the 3 voltage indicators. METHODS: In brain slices prepared from VSFP-transgenic or ASAP2s-transgenic mice, we performed multi-site optical imaging of evoked cortical depolarizations - compound excitatory postsynaptic potentials (cEPSPs). Optical signal amplitudes (ΔF/F) and cEPSP decay rates (OFF rates) were compared using analysis of variance (ANOVA) followed by unpaired Student's t test (31-104 data points per voltage indicator). RESULTS: The ASAP2s signal amplitude (ΔF/F) was on average 3 times greater than Di-4-Anepps, and 7 times greater than VSFP. The optical cEPSP decay (OFF rate) was the slowest in Di-4-Anepps and fastest in ASAP2s. When ASAP2s expression was weak, we observed slow, label-free (autofluorescence, metabolic) optical signals mixed into the ASAP2s traces. Fast hyperpolarizations, that typically follow depolarizing cortical transients (afterhyperpolarizations), were prominent in ASAP2s but not present in the VSFP and Di-4-Anepps experiments. CONCLUSIONS: Experimental applications for ASAP2s may potentially include systems neuroscience studies that require voltage indicators with large signal amplitude (ΔF/F), fast decay times (fast response time is needed for monitoring high frequency brain oscillations), and/or detection of brain patches in transiently hyperpolarized states (afterhyperpolarization).


Subject(s)
Optical Imaging , Pyridinium Compounds , Mice , Animals , Mice, Transgenic
14.
Proc Natl Acad Sci U S A ; 116(24): 12007-12012, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31118285

ABSTRACT

Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. FXS is caused by loss of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates translation of numerous mRNA targets, some of which are present at synapses. While protein synthesis deficits have long been postulated as an etiology of FXS, how FMRP loss affects distributions of newly synthesized proteins is unknown. Here we investigated the role of FMRP in regulating expression of new copies of the synaptic protein PSD95 in an in vitro model of synaptic plasticity. We find that local BDNF application promotes persistent accumulation of new PSD95 at stimulated synapses and dendrites of cultured neurons, and that this accumulation is absent in FMRP-deficient mouse neurons. New PSD95 accumulation at sites of BDNF stimulation does not require known mechanisms regulating FMRP-mRNA interactions but instead requires the PI3K-mTORC1-S6K1 pathway. Surprisingly, in FMRP-deficient neurons, BDNF induction of new PSD95 accumulation can be restored by mTORC1-S6K1 blockade, suggesting that constitutively high mTORC1-S6K1 activity occludes PSD95 regulation by BDNF and that alternative pathways exist to mediate induction when mTORC1-S6K1 is inhibited. This study provides direct evidence for deficits in local protein synthesis and accumulation of newly synthesized protein in response to local stimulation in FXS, and supports mTORC1-S6K1 pathway inhibition as a potential therapeutic approach for FXS.


Subject(s)
Disks Large Homolog 4 Protein/metabolism , Fragile X Mental Retardation Protein/metabolism , Neurons/metabolism , Animals , Dendrites/metabolism , Fragile X Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Rats , Signal Transduction/physiology , Synapses/metabolism
15.
Trends Biochem Sci ; 42(2): 111-129, 2017 02.
Article in English | MEDLINE | ID: mdl-27814948

ABSTRACT

Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.


Subject(s)
Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Humans , Phytochrome/chemistry , Protein Engineering
16.
Nat Methods ; 15(7): 523-526, 2018 07.
Article in English | MEDLINE | ID: mdl-29967496

ABSTRACT

Robust approaches for chemogenetic control of protein function would have many biological applications. We developed stabilizable polypeptide linkages (StaPLs) based on hepatitis C virus protease. StaPLs undergo autoproteolysis to cleave proteins by default, whereas protease inhibitors prevent cleavage and preserve protein function. We created StaPLs responsive to different clinically approved drugs to bidirectionally control transcription with zinc-finger-based effectors, and used StaPLs to create single-chain, drug-stabilizable variants of CRISPR-Cas9 and caspase-9.


Subject(s)
Gene Expression Regulation/drug effects , Protein Engineering , CRISPR-Cas Systems , Dimerization , Gene Targeting , HEK293 Cells , HeLa Cells , Humans , Plasmids , Protein Folding , Viral Nonstructural Proteins/metabolism , Zinc Fingers
17.
Nat Chem Biol ; 15(5): 433-436, 2019 05.
Article in English | MEDLINE | ID: mdl-30936501

ABSTRACT

Fluorescent indicators are used widely to visualize calcium dynamics downstream of membrane depolarization or G-protein-coupled receptor activation, but are poorly suited for non-invasive imaging in mammals. Here, we report a bright calcium-modulated bioluminescent indicator named Orange CaMBI (Orange Calcium-modulated Bioluminescent Indicator). Orange CaMBI reports calcium dynamics in single cells and, in the context of a transgenic mouse, reveals calcium oscillations in whole organs in an entirely non-invasive manner.


Subject(s)
Calcium/chemistry , Luminescent Proteins/chemistry , Optical Imaging , Organometallic Compounds/chemistry , Animals , Luminescent Measurements , Mice , Mice, Transgenic
18.
Nat Methods ; 13(12): 989-992, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27798609

ABSTRACT

We describe a red-shifted fluorescence resonance energy transfer (FRET) pair optimized for dual-color fluorescence lifetime imaging (FLIM). This pair utilizes a newly developed FRET donor, monomeric cyan-excitable red fluorescent protein (mCyRFP1), which has a large Stokes shift and a monoexponential fluorescence lifetime decay. When used together with EGFP-based biosensors, the new pair enables simultaneous imaging of the activities of two signaling molecules in single dendritic spines undergoing structural plasticity.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Optical Imaging/methods , Animals , Electroporation , Endoplasmic Reticulum/metabolism , Female , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/metabolism , Mice , Microscopy, Fluorescence, Multiphoton , Photobleaching , Pregnancy , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Transfection , Red Fluorescent Protein
19.
Nat Methods ; 13(12): 993-996, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27798610

ABSTRACT

A robust method for simultaneous visualization of all four cell cycle phases in living cells is highly desirable. We developed an intensiometric reporter of the transition from S to G2 phase and engineered a far-red fluorescent protein, mMaroon1, to visualize chromatin condensation in mitosis. We combined these new reporters with the previously described Fucci system to create Fucci4, a set of four orthogonal fluorescent indicators that together resolve all cell cycle phases.


Subject(s)
Cell Cycle/physiology , Luminescent Proteins/chemistry , Molecular Imaging/methods , Recombinant Fusion Proteins/chemistry , Time-Lapse Imaging/methods , Animals , Cell Culture Techniques , Chromatin/metabolism , G2 Phase/physiology , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/genetics , Mice , Mitosis , Models, Molecular , NIH 3T3 Cells , Recombinant Fusion Proteins/genetics , S Phase/physiology , Red Fluorescent Protein
20.
Nat Methods ; 11(5): 572-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24633408

ABSTRACT

A method for non-invasive visualization of genetically labeled cells in animal disease models with micrometer-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the 'optical window' above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence than mNeptune, whereas the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts into myocytes in living mice with high anatomical detail.


Subject(s)
Cell Differentiation , Diagnostic Imaging/methods , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Animals , Crystallography, X-Ray , Gene Library , HeLa Cells , Hemoglobins/chemistry , Humans , Hydrogen Bonding , Male , Mice , Mice, Nude , Molecular Sequence Data , Muscle Cells/metabolism , Muscle, Skeletal/pathology , Muscles/pathology , Mutagenesis , Myoblasts/metabolism , Myoglobin/chemistry , NIH 3T3 Cells , Regeneration , Stem Cells/cytology , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL