Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell ; 187(3): 545-562, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306981

ABSTRACT

Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.


Subject(s)
Biology , Computational Biology , Macromolecular Substances/chemistry
2.
J Biol Chem ; 300(7): 107457, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866324

ABSTRACT

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

3.
Mol Cell ; 67(3): 433-446.e4, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28689656

ABSTRACT

The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks.


Subject(s)
Alternative Splicing , Body Temperature Regulation , Circadian Clocks , Circadian Rhythm , TATA-Box Binding Protein/metabolism , 5' Untranslated Regions , Animals , Cell Line, Tumor , Exons , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphorylation , RNA Interference , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , TATA-Box Binding Protein/genetics , Time Factors , Transfection
4.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36620874

ABSTRACT

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Subject(s)
Cell Hypoxia , Nuclear Speckles , RNA Splicing , Serine-Arginine Splicing Factors , Humans , Alternative Splicing , Exons/genetics , Phosphoproteins/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , HeLa Cells
5.
Nucleic Acids Res ; 50(7): 4083-4099, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357505

ABSTRACT

Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.


Subject(s)
3' Untranslated Regions , Nucleic Acid Conformation , Magnetic Resonance Spectroscopy , RNA, Messenger/metabolism , Scattering, Small Angle , X-Ray Diffraction
6.
Genes Dev ; 30(5): 553-66, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26944680

ABSTRACT

Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.


Subject(s)
Alternative Splicing/genetics , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Active Transport, Cell Nucleus/genetics , Animals , Cell Line , Mice , Nuclear Proteins/metabolism , Protein Binding , Reproducibility of Results , Ribonucleoproteins/metabolism , Serine-Arginine Splicing Factors
8.
Biochem Soc Trans ; 50(1): 187-198, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34940860

ABSTRACT

Members of the arginine-serine-rich protein family (SR proteins) are multifunctional RNA-binding proteins that have emerged as key determinants for mRNP formation, identity and fate. They bind to pre-mRNAs early during transcription in the nucleus and accompany bound transcripts until they are translated or degraded in the cytoplasm. SR proteins are mostly known for their essential roles in constitutive splicing and as regulators of alternative splicing. However, many additional activities of individual SR proteins, beyond splicing, have been reported in recent years. We will summarize the different functions of SR proteins and discuss how multifunctionality can be achieved. We will also highlight the difficulties of studying highly versatile SR proteins and propose approaches to disentangle their activities, which is transferrable to other multifunctional RBPs.


Subject(s)
RNA Precursors , RNA Splicing , Alternative Splicing , RNA Precursors/metabolism , RNA-Binding Proteins/metabolism , Serine/genetics
9.
Circ Res ; 125(2): 170-183, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31145021

ABSTRACT

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Subject(s)
Myocytes, Cardiac/metabolism , Serine-Arginine Splicing Factors/genetics , Ventricular Dysfunction/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/metabolism , Systole , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Ventricular Dysfunction/metabolism
10.
Nucleic Acids Res ; 47(2): 911-928, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30445574

ABSTRACT

Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.


Subject(s)
Introns , RNA Splice Sites , RNA Splicing , RNA, Long Noncoding/metabolism , Serine-Arginine Splicing Factors/metabolism , HeLa Cells , Humans , Pyrimidines/analysis
11.
Semin Cell Dev Biol ; 79: 131-142, 2018 07.
Article in English | MEDLINE | ID: mdl-29102717

ABSTRACT

Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.


Subject(s)
Cell Nucleus/genetics , Disease/genetics , Gene Expression Regulation , RNA, Messenger/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Models, Genetic , Quality Control , RNA, Messenger/metabolism
12.
Nat Rev Genet ; 14(4): 275-87, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23478349

ABSTRACT

mRNA is packaged into ribonucleoprotein particles called mRNPs. A multitude of RNA-binding proteins as well as a host of associated proteins participate in the fate of mRNA from transcription and processing in the nucleus to translation and decay in the cytoplasm. Methodological innovations in cell biology and genome-wide high-throughput approaches have revealed an unexpected diversity of mRNA-associated proteins and unforeseen interconnections between mRNA-processing steps. Recent insights into mRNP formation in vivo have also highlighted the importance of mRNP packaging, which can sort RNAs on the basis of their length and determine mRNA fate through alternative mRNP assembly, processing and export pathways.


Subject(s)
Models, Genetic , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Protein Binding , Protein Biosynthesis , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Transcription, Genetic
13.
Nucleic Acids Res ; 45(18): 10452-10465, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28977534

ABSTRACT

RNA binding proteins (RBPs) regulate the lives of all RNAs from transcription, processing, and function to decay. How RNA-protein interactions change over time and space to support these roles is poorly understood. Towards this end, we sought to determine how two SR proteins-SRSF3 and SRSF7, regulators of pre-mRNA splicing, nuclear export and translation-interact with RNA in different cellular compartments. To do so, we developed Fractionation iCLIP (Fr-iCLIP), in which chromatin, nucleoplasmic and cytoplasmic fractions are prepared from UV-crosslinked cells and then subjected to iCLIP. As expected, SRSF3 and SRSF7 targets were detected in all fractions, with intron, snoRNA and lncRNA interactions enriched in the nucleus. Cytoplasmically-bound mRNAs reflected distinct functional groupings, suggesting coordinated translation regulation. Surprisingly, hundreds of cytoplasmic intron targets were detected. These cytoplasmic introns were found to be highly conserved and introduced premature termination codons into coding regions. However, many intron-retained mRNAs were not substrates for nonsense-mediated decay (NMD), even though they were detected in polysomes. These findings suggest that intron-retained mRNAs in the cytoplasm have previously uncharacterized functions and/or escape surveillance. Hence, Fr-iCLIP detects the cellular location of RNA-protein interactions and provides insight into co-transcriptional, post-transcriptional and cytoplasmic RBP functions for coding and non-coding RNAs.


Subject(s)
Cell Nucleus/metabolism , Chemical Fractionation/methods , Chromatin Immunoprecipitation/methods , Chromatin/metabolism , Cytoplasm/metabolism , Introns , Serine-Arginine Splicing Factors/metabolism , Base Sequence , Cells, Cultured , Conserved Sequence , Cross-Linking Reagents/chemistry , Humans , Introns/genetics , Protein Binding , RNA Splicing/physiology , RNA-Binding Proteins/metabolism
14.
Adv Exp Med Biol ; 1203: 83-112, 2019.
Article in English | MEDLINE | ID: mdl-31811631

ABSTRACT

Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.


Subject(s)
RNA Splicing , RNA-Binding Proteins , Ribonucleoproteins , Gene Expression Regulation , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism
15.
RNA Biol ; 15(8): 1081-1092, 2018.
Article in English | MEDLINE | ID: mdl-30200840

ABSTRACT

Alternative splicing (AS) in response to changing external conditions often requires alterations in the ability of sequence-specific RNA-binding proteins to bind to cis-acting sequences in their target pre-mRNA. While daily oscillations in AS events have been described in several organisms, cis-acting sequences that control time of the day-dependent AS remain largely elusive. Here we define cis-regulatory RNA elements that control body-temperature driven rhythmic AS using the mouse U2af26 gene as a model system. We identify a complex network of cis-regulatory sequences that regulate AS of U2af26, and show that the activity of two enhancer elements is necessary for oscillating AS. A minigene comprising these U2af26 regions recapitulates rhythmic splicing of the endogenous gene, which is controlled through temperature-regulated SR protein phosphorylation. Mutagenesis of the minigene delineates the cis-acting enhancer element for SRSF2 within exon 6 to single nucleotide resolution and reveals that the combined activity of SRSF2 and SRSF7 is required for oscillating U2af26 AS. By combining RNA-Seq with an siRNA screen and individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP), we identify a complex network of SR proteins that globally controls temperature-dependent rhythmic AS, with the direction of splicing depending on the position of the cis-acting elements. Together, we provide detailed insights into the sequence requirements that allow trans-acting factors to generate daily rhythms in AS.


Subject(s)
Alternative Splicing , RNA Precursors/genetics , RNA, Messenger/metabolism , Regulatory Sequences, Nucleic Acid , Serine-Arginine Splicing Factors/metabolism , Splicing Factor U2AF/genetics , Animals , Cells, Cultured , Exons , Mice , RNA Precursors/metabolism , RNA, Messenger/genetics , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/metabolism
16.
Prostaglandins Other Lipid Mediat ; 133: 60-67, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28803964

ABSTRACT

5-Lipoxygenase (5-LO) catalyzes the initial two steps of the conversion of arachidonic acid to leukotrienes which represent a group of pro-inflammatory lipid mediators involved in immune defense reactions as well as inflammation, allergy and cancer. Transforming growth factor-ß (TGFß) and calcitriol strongly upregulate 5-LO expression during myeloid cell differentiation and MLL-AF4 has been shown to strongly activate the 5-LO promoter. Here, we investigated the role of TGFß/SMAD signalling in 5-LO promoter activation. We identified two functional SMAD binding elements in the proximal part of the 5-LO promoter which significantly induce 5-LO promoter activity via TGFß and SMAD3/4. Since aberrant 5-LO gene expression has been linked with mixed lineage leukemia (MLL) which is characterized by the presence of MLL fusion proteins (e.g. MLL-AF4), we also investigated the influence of TGFß/SMADs on MLL- and MLL-AF4-mediated 5-LO promoter activation. Our data show that induction of 5-LO promoter activity by SMAD3/4 is MLL-dependent and that knockdown of the MLL complex component MEN1 attenuates the SMAD effect. Our data suggest that induction of 5-LO gene expression by TGFß is at least in part due to stimulation of transcript initiation.


Subject(s)
Arachidonate 5-Lipoxygenase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Arachidonate 5-Lipoxygenase/biosynthesis , Base Sequence , Binding Sites , Enzyme Induction , Gene Knockdown Techniques , HeLa Cells , Humans
17.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38108808

ABSTRACT

Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.


Subject(s)
Gene Knockdown Techniques , RNA-Binding Proteins , Cell Line , RNA-Binding Proteins/genetics , Plasmids/genetics , Ubiquitin-Protein Ligases
19.
Noncoding RNA ; 8(4)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35893232

ABSTRACT

Besides transcription, RNA decay accounts for a large proportion of regulated gene expression and is paramount for cellular functions. Classical RNA surveillance pathways, like nonsense-mediated decay (NMD), are also implicated in the turnover of non-mutant transcripts. Whereas numerous protein factors have been assigned to distinct RNA decay pathways, the contribution of long non-coding RNAs (lncRNAs) to RNA turnover remains unknown. Here we identify the lncRNA CALA as a potent regulator of RNA turnover in endothelial cells. We demonstrate that CALA forms cytoplasmic ribonucleoprotein complexes with G3BP1 and regulates endothelial cell functions. A detailed characterization of these G3BP1-positive complexes by mass spectrometry identifies UPF1 and numerous other NMD factors having cytoplasmic G3BP1-association that is CALA-dependent. Importantly, CALA silencing impairs degradation of NMD target transcripts, establishing CALA as a non-coding regulator of RNA steady-state levels in the endothelium.

20.
Front Mol Biosci ; 8: 673038, 2021.
Article in English | MEDLINE | ID: mdl-34026847

ABSTRACT

Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL