Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(3): 610-624.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612739

ABSTRACT

Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.


Subject(s)
Immunoglobulin A/metabolism , Interleukin-10/metabolism , Intestines/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Immunoglobulin A/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neuroimmunomodulation/immunology , Plasma Cells/metabolism
3.
Immunity ; 51(2): 285-297.e5, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31272808

ABSTRACT

Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8+ T cell memory. Antigen-activated CD8+ T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism. The microbiota-derived short-chain fatty acid (SCFA) butyrate promoted cellular metabolism, enhanced memory potential of activated CD8+ T cells, and SCFAs were required for optimal recall responses upon antigen re-encounter. Mechanistic experiments revealed that butyrate uncoupled the tricarboxylic acid cycle from glycolytic input in CD8+ T cells, which allowed preferential fueling of oxidative phosphorylation through sustained glutamine utilization and fatty acid catabolism. Our findings reveal a role for the microbiota in promoting CD8+ T cell long-term survival as memory cells and suggest that microbial metabolites guide the metabolic rewiring of activated CD8+ T cells to enable this transition.


Subject(s)
Butyrates/metabolism , CD8-Positive T-Lymphocytes/immunology , Fatty Acids, Volatile/metabolism , Immunologic Memory , Microbiota/immunology , Adoptive Transfer , Animals , Antigens/immunology , Cell Differentiation , Cells, Cultured , Glycolysis , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction
5.
Nat Immunol ; 14(3): 290-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23377201

ABSTRACT

The long-term survival of plasma cells is entirely dependent on signals derived from their environment. These extrinsic factors presumably induce and sustain the expression of antiapoptotic proteins of the Bcl-2 family. It is uncertain whether there is specificity among Bcl-2 family members in the survival of plasma cells and whether their expression is linked to specific extrinsic factors. We found here that deletion of the gene encoding the antiapoptotic protein Mcl-1 in plasma cells resulted in rapid depletion of this population in vivo. Furthermore, we found that the receptor BCMA was needed to establish high expression of Mcl-1 in bone marrow but not spleen plasma cells and that establishing this survival pathway preceded the component of plasma cell differentiation that depends on the transcriptional repressor Blimp-1. Our results identify a critical role for Mcl-1 in the maintenance of plasma cells.


Subject(s)
B-Cell Maturation Antigen/metabolism , Plasma Cells/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factors/metabolism , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Survival , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cell Leukemia Sequence 1 Protein , Plasma Cells/cytology , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-bcl-2/genetics , Spleen/immunology
6.
Arterioscler Thromb Vasc Biol ; 43(4): 522-536, 2023 04.
Article in English | MEDLINE | ID: mdl-36794587

ABSTRACT

BACKGROUND: CD4+ (cluster of differentation) and CD8+ T cells are increased in the ocular fluids of patients with neovascular retinopathy, yet their role in the disease process is unknown. METHODS: We describe how CD8+ T cells migrate into the retina and contribute to pathological angiogenesis by releasing cytokines and cytotoxic factors. RESULTS: In oxygen-induced retinopathy, flow cytometry revealed the numbers of CD4+ and CD8+ T cells were increased in blood, lymphoid organs, and retina throughout the development of neovascular retinopathy. Interestingly, the depletion of CD8+ T cells but not CD4+ T cells reduced retinal neovascularization and vascular leakage. Using reporter mice expressing gfp (green fluorescence protein) in CD8+ T cells, these cells were localized near neovascular tufts in the retina, confirming that CD8+ T cells contribute to the disease. Furthermore, the adoptive transfer of CD8+ T cells deficient in TNF (tumor necrosis factor), IFNγ (interferon gamma), Prf (perforin), or GzmA/B (granzymes A/B) into immunocompetent Rag1-/- mice revealed that CD8+ T cells mediate retinal vascular disease via these factors, with TNF influencing all aspects of vascular pathology. The pathway by which CD8+ T cells migrate into the retina was identified as CXCR3 (C-X-C motif chemokine receptor 3) with the CXCR3 blockade reducing the number of CD8+ T cells within the retina and retinal vascular disease. CONCLUSIONS: We discovered that CXCR3 is central to the migration of CD8+ T cells into the retina as the CXCR3 blockade reduced the number of CD8+ T cells within the retina and vasculopathy. This research identified an unappreciated role for CD8+ T cells in retinal inflammation and vascular disease. Reducing CD8+ T cells via their inflammatory and recruitment pathways is a potential treatment for neovascular retinopathies.


Subject(s)
Retinal Diseases , Vascular Diseases , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Neovascularization, Pathologic , Retina/metabolism , Retinal Diseases/metabolism , Interferon-gamma/metabolism , Vascular Diseases/pathology , Mice, Inbred C57BL
7.
J Am Soc Nephrol ; 33(5): 966-984, 2022 05.
Article in English | MEDLINE | ID: mdl-35387873

ABSTRACT

BACKGROUND: The cytokine IL-33 is an activator of innate lymphoid cells 2 (ILC2s) in innate immunity and allergic inflammation. B cell activating factor (BAFF) plays a central role in B cell proliferation and differentiation, and high levels of this protein cause excess antibody production, including IgA. BAFF-transgenic mice overexpress BAFF and spontaneously develop glomerulonephritis that resembles human IgA nephropathy. METHODS: We administered IL-33 or PBS to wild-type and BAFF-transgenic mice. After treating Rag1-deficient mice with IL-33, with or without anti-CD90.2 to preferentially deplete ILC2s, we isolated splenocytes, which were adoptively transferred into BAFF-transgenic mice. RESULTS: BAFF-transgenic mice treated with IL-33 developed more severe kidney dysfunction and proteinuria, glomerular sclerosis, tubulointerstitial damage, and glomerular deposition of IgA and C3. Compared with wild-type mice, BAFF-transgenic mice exhibited increases of CD19+ B cells in spleen and kidney and ILC2s in kidney and intestine, which were further increased by administration of IL-33. Administering IL-33 to wild-type mice had no effect on kidney function or histology, nor did it alter the number of ILC2s in spleen, kidney, or intestine. To understand the role of ILC2s, splenocytes were transferred from IL-33-treated Rag1-deficient mice into BAFF-transgenic mice. Glomerulonephritis and IgA deposition were exacerbated by transfer of IL-33-stimulated Rag1-deficient splenocytes, but not by ILC2 (anti-CD90.2)-depleted splenocytes. Wild-type mice infused with IL-33-treated Rag1-deficient splenocytes showed no change in kidney function or ILC2 numbers or distribution. CONCLUSIONS: IL-33-expanded ILC2s exacerbated IgA glomerulonephritis in a mouse model. These findings indicate that IL-33 and ILC2s warrant evaluation as possible mediators of human IgA nephropathy.


Subject(s)
Glomerulonephritis, IGA , Interleukin-33 , Animals , B-Cell Activating Factor , Female , Homeodomain Proteins/genetics , Humans , Immunity, Innate , Immunoglobulin A , Interleukin-4 , Lymphocytes , Male , Mice , Mice, Transgenic
8.
Immunol Cell Biol ; 100(10): 761-776, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36106449

ABSTRACT

The role of B-cell-activating factor (BAFF) in B-lymphocyte biology has been comprehensively studied, but its contributions to innate immunity remain unclear. Natural killer (NK) cells form the first line of defense against viruses and tumors, and have been shown to be defective in patients with systemic lupus erythematosus (SLE). The link between BAFF and NK cells in the development and progression of SLE remains unstudied. By assessing NK cell numbers in wild-type (WT), BAFF-/- (BAFF deficient), BAFF-R-/- (BAFF receptor deficient), TACI-/- (transmembrane activator and calcium modulator and cyclophilin ligand interactor deficient), BCMA-/- (B-cell maturation antigen deficient) and BAFF transgenic (Tg) mice, we observed that BAFF signaling through BAFF-R was essential for sustaining NK cell numbers in the spleen. However, according to the cell surface expression of CD27 and CD11b on NK cells, we found that BAFF was dispensable for NK cell maturation. Ex vivo and in vivo models showed that NK cells from BAFF-/- and BAFF Tg mice produced interferon-γ and killed tumor cells at a level similar to that in WT mice. Finally, we established that NK cells do not express receptors that interact with BAFF in the steady state or in the BAFF Tg mouse model of SLE. Our findings demonstrate that BAFF has an indirect effect on NK cell homeostasis and no effect on NK cell function.


Subject(s)
Lupus Erythematosus, Systemic , Transmembrane Activator and CAML Interactor Protein , Mice , Animals , Transmembrane Activator and CAML Interactor Protein/genetics , Population Density , Interleukin-4 , Mice, Transgenic , Killer Cells, Natural/metabolism
9.
Nat Immunol ; 11(8): 681-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20644574

ABSTRACT

This paper synthesizes recent progress toward understanding the integrated control systems and fail-safes that guide the quality and quantity of antibody produced by B cells. We focus on four key decisions: (1) the choice between proliferation or death in perifollicular B cells in the first 3 days after antigen encounter; (2) differentiation of proliferating perifollicular B cells into extrafollicular plasma cells or germinal center B cells; (3) positive selection of B cell antigen receptor (BCR) affinity for foreign antigen versus negative selection of BCR affinity for self antigen in germinal center B cells; and (4) survival versus death of antibody-secreting plasma cells. Understanding the engineering of these control systems represents a challenging future step for treating disorders of antibody production in autoimmunity, allergy and immunodeficiency.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , Immunity, Humoral/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antigen Presentation/immunology , Cell Death/immunology , Cell Differentiation/immunology , Humans
10.
Immunity ; 39(3): 573-83, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24012421

ABSTRACT

Activation-induced cell death (AICD) plays a critical role in immune homeostasis and tolerance. In T-cell-dependent humoral responses, AICD of B cells is initiated by Fas ligand (FasL) on T cells, stimulating the Fas receptor on B cells. In contrast, T-cell-independent B cell responses involve innate-type B lymphocytes, such as marginal zone (MZ) B cells, and little is known about the mechanisms that control AICD during innate B cell responses to Toll-like receptor (TLR) activation. Here, we show that MZ B cells undergo AICD in response to TLR4 activation in vivo. The transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI) receptor and TLR4 cooperate to upregulate expression of both FasL and Fas on MZ B cells and also to repress inhibitors of Fas-induced apoptosis signaling. These findings demonstrate an unappreciated role for TACI and its ligands in the regulation of AICD during T-cell-independent B cell responses.


Subject(s)
Apoptosis , Fas Ligand Protein/metabolism , Toll-Like Receptor 4/metabolism , Transmembrane Activator and CAML Interactor Protein/metabolism , fas Receptor/metabolism , Animals , B-Cell Activation Factor Receptor/biosynthesis , B-Lymphocytes/immunology , Enzyme Activation , Fas Ligand Protein/biosynthesis , Lipopolysaccharides , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Transmembrane Activator and CAML Interactor Protein/genetics
11.
Immunity ; 39(4): 770-81, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24138884

ABSTRACT

Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory.


Subject(s)
Antibodies/immunology , Immunologic Memory , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR5/immunology , Receptors, CXCR/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , B-Lymphocytes/virology , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression , Germinal Center/immunology , Germinal Center/pathology , Germinal Center/virology , Humans , Immunity, Humoral , Immunophenotyping , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Mice , Programmed Cell Death 1 Receptor/genetics , Proto-Oncogene Proteins c-bcl-6 , Receptors, CXCR/genetics , Receptors, CXCR5/genetics , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Helper-Inducer/virology
12.
Clin Exp Immunol ; 205(2): 169-181, 2021 08.
Article in English | MEDLINE | ID: mdl-33864242

ABSTRACT

The impact of treatment on the risk of lymphoma in patients with rheumatoid arthritis (RA) is unclear. Here, we aimed to assess if the risk of lymphoma differs according to the type of tumor necrosis factor inhibitor (TNFi), comparing monoclonal anti-TNF antibodies to the soluble TNF receptor. We used B cell activating factor belonging to the TNF family (BAFF)-transgenic (Tg) mice as a model of autoimmunity-associated lymphoma. Six-month-old BAFF-Tg mice were treated with TNFi for 12 months. Histological examination of the spleen, assessment of the cellular composition of the spleen by flow cytometry and assessment of B cell clonality were performed at euthanasia. Crude mortality and incidence of lymphoma were significantly higher in mice treated with monoclonal anti-TNF antibodies compared to both controls and mice treated with the soluble TNF receptor, even at a high dose. Flow cytometry analysis revealed decreased splenic macrophage infiltration in mice treated with monoclonal anti-TNF antibodies. Overall, this study demonstrates, for the first time, that a very prolonged treatment with monoclonal anti-TNF antibodies increase the risk of lymphoma in B cell-driven autoimmunity. These data suggest a closer monitoring for lymphoma development in patients suffering from B cell-driven autoimmune disease with long-term exposure to monoclonal anti-TNF antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Arthritis, Rheumatoid/immunology , B-Cell Activating Factor/immunology , Lymphoma/immunology , Mice, Transgenic/immunology , Tumor Necrosis Factor Inhibitors/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Autoimmune Diseases/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Cell Line , Mice , Mice, Inbred C57BL , Spleen/immunology
13.
Nat Immunol ; 10(12): 1283-91, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19898472

ABSTRACT

To identify genes and mechanisms involved in humoral immunity, we did a mouse genetic screen for mutations that do not affect the first wave of antibody to immunization but disrupt response maturation and persistence. The first two mutants identified had loss-of-function mutations in the gene encoding a previously obscure member of a family of Rho-Rac GTP-exchange factors, DOCK8. DOCK8-mutant B cells were unable to form marginal zone B cells or to persist in germinal centers and undergo affinity maturation. Dock8 mutations disrupted accumulation of the integrin ligand ICAM-1 in the B cell immunological synapse but did not alter other aspects of B cell antigen receptor signaling. Humoral immunodeficiency due to Dock8 mutation provides evidence that organization of the immunological synapse is critical for signaling the survival of B cell subsets required for long-lasting immunity.


Subject(s)
Antibody Formation , B-Lymphocytes/immunology , Germinal Center/immunology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Mutation , Synapses/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/metabolism , Base Sequence , Germinal Center/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Sequence Alignment
14.
Immunol Cell Biol ; 96(5): 453-462, 2018 05.
Article in English | MEDLINE | ID: mdl-29499091

ABSTRACT

Altered B-cell homeostasis underlies a wide range of pathologies, from cancers to autoimmunity and immunodeficiency. The molecular safeguards against those disorders, which also allow effective immune responses, are therefore particularly critical. Here, we review recent findings detailing the fine control of B-cell homeostasis, during B-cell development, maturation in the periphery and during activation and differentiation into antibody-producing cells.


Subject(s)
Antibody-Producing Cells/immunology , B-Lymphocytes/immunology , Immune System Diseases/immunology , Animals , Cell Differentiation , Homeostasis , Humans , Immune Tolerance , Immunity, Humoral , Lymphocyte Activation
15.
Ann Rheum Dis ; 77(10): 1463-1470, 2018 10.
Article in English | MEDLINE | ID: mdl-29936438

ABSTRACT

OBJECTIVES: TNF inhibitors (TNFi) can induce anti-drug antibodies (ADA) in patients with autoimmune diseases (AID) leading to clinical resistance. We explored a new way of using methotrexate (MTX) to decrease this risk of immunisation. METHODS: We treated BAFF transgenic (BAFFtg) mice, a model of AID in which immunisation against biologic drugs is high, with different TNFi. We investigated the effect of a single course of MTX during the first exposure to TNFi. Wild-type (WT) and BAFFtg mice were compared for B-Cell surface markers involved in MTX-related purinergic metabolism, adenosine production and regulatory B-cells (Bregs).We translated the study to macaques and patients with rheumatoid arthritis from the ABIRISK cohort to determine if there was an interaction between serum BAFF levels and MTX that prevented immuniation. RESULTS: In BAFFtg but not in WT mice or macaques, a single course of MTX prevented immunisation against TNFi and maintained drug concentration for over 52 weeks. BAFFtg mice B-cells expressed more CD73 and CD39 compared to WT mice. MTX induced adenosine release from B cells and increased Bregs and precursors. Use of CD73 blocking antibodies reversed MTX-induced tolerance. In patients from the ABIRISK cohort treated with TNFi for chronic inflammatory diseases, high BAFF serum level correlated with absence of ADA to TNFi only in patients cotreated with MTX but not in patients on TNFi monotherapy. CONCLUSION: MTX and BAFF interact in mice where CD73, adenosine and regulatory B cells were identified as key actors in this phenomenon. MTX and BAFF also interact in patients to prevent ADA formation.


Subject(s)
Autoimmune Diseases/drug therapy , B-Cell Activating Factor/immunology , Drug Resistance/immunology , Methotrexate/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Animals , Antibody Formation/drug effects , Antibody Formation/immunology , Antigens, CD/metabolism , Apyrase/metabolism , Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , B-Cell Activating Factor/drug effects , B-Lymphocytes/metabolism , Disease Models, Animal , Humans , Immunization , Macaca , Mice , Mice, Transgenic , Tumor Necrosis Factor-alpha/immunology
16.
Semin Immunol ; 26(3): 191-202, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24996229

ABSTRACT

Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Tumor Necrosis Factors/metabolism , Animals , Autoimmune Diseases/immunology , B-Lymphocytes/metabolism , Cell Survival , Humans , T-Lymphocytes/immunology , Tumor Necrosis Factors/classification
17.
J Biol Chem ; 291(38): 19826-34, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27451394

ABSTRACT

B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice.


Subject(s)
Antibodies/pharmacology , B-Cell Activating Factor/antagonists & inhibitors , B-Lymphocytes/immunology , Immunoglobulin G/pharmacology , Animals , Antibodies/immunology , B-Cell Activating Factor/genetics , B-Cell Activating Factor/immunology , B-Lymphocytes/pathology , Cell Survival/drug effects , Hyperplasia , Immunoglobulin G/immunology , Lymphocyte Depletion/methods , Mice , Mice, Knockout
18.
Development ; 141(9): 1857-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24718993

ABSTRACT

The CXCL12/CXCR4 signaling pathway is involved in the development of numerous neuronal and non-neuronal structures. Recent work established that the atypical second CXCL12 receptor, CXCR7, is essential for the proper migration of interneuron precursors in the developing cerebral cortex. Two CXCR7-mediated functions were proposed in this process: direct modulation of ß-arrestin-mediated signaling cascades and CXCL12 scavenging to regulate local chemokine availability and ensure responsiveness of the CXCL12/CXCR4 pathway in interneurons. Neither of these functions has been proven in the embryonic brain. Here, we demonstrate that migrating interneurons efficiently sequester CXCL12 through CXCR7. CXCR7 ablation causes excessive phosphorylation and downregulation of CXCR4 throughout the cortex in mice expressing CXCL12, but not in CXCL12-deficient animals. Cxcl12(-/-) mice lack activated CXCR4 in embryonic brain lysates and display a similar interneuron positioning defect as Cxcr4(-/-), Cxcr7(-/-) and Cxcl12(-/-);Cxcr7(-/-) animals. Thus, CXCL12 is the only CXCR4-activating ligand in the embryonic brain and deletion of one of the CXCL12 receptors is sufficient to generate a migration phenotype that corresponds to the CXCL12-deficient pathway. Our findings imply that interfering with the CXCL12-scavenging activity of CXCR7 causes loss of CXCR4 function as a consequence of excessive CXCL12-mediated CXCR4 activation and degradation.


Subject(s)
Cell Movement , Cerebral Cortex/cytology , Chemokine CXCL12/metabolism , Down-Regulation , Interneurons/cytology , Interneurons/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Animals , Embryo, Mammalian/cytology , HEK293 Cells , Humans , Mice , Models, Biological , Recombinant Fusion Proteins/metabolism
19.
Crit Care Med ; 45(2): e184-e194, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27749344

ABSTRACT

OBJECTIVES: To study the effect of a lack of antioxidant defenses during lethal pneumonia induced by Klebsiella pneumonia, compared to wild-type mice. SETTING: Laboratory experiments. SUBJECTS: C57Bl6 and glutathione peroxidase 1 knockout mice. INTERVENTION: Murine acute pneumonia model induced by Klebsiella pneumonia. MEASUREMENTS AND MAIN RESULTS: We show here that despite a lack of one of the major antioxidant defense enzymes, glutathione peroxidase 1 knockout mice are protected during lethal pneumonia induced by Klebsiella pneumonia, compared to wild-type mice. Furthermore, this protective effect was suppressed when antioxidant defenses were restored. Infected glutathione peroxidase 1 mice showed an early and significant, albeit transient, increase in the activity of the NOD-like receptor family, pyrin domain containing 3 inflammasome when compared with wild-type mice. The key role of the NOD-like receptor family, pyrin domain containing 3 inflammasome during acute pneumonia was confirmed in vivo when the protective effect was suppressed by treating glutathione peroxidase 1 mice with an interleukin-1 receptor antagonist. Additionally we report, in vitro, that increased concentrations of active caspase-1 and interleukin-1ß are related to an increased concentration of hydrogen peroxide in bacterially infected glutathione peroxidase 1 macrophages and that restoring hydrogen peroxide antioxidant defenses suppressed this effect. CONCLUSIONS: Our findings demonstrate that, contrary to current thinking, an early intervention targeting NOD-like receptor family, pyrin domain containing 3 inflammasome activity induces a timely and efficient activation of the innate immune response during acute infection. Our findings also demonstrate a role for hydrogen peroxide in the mechanisms tightly regulating NOD-like receptor family, pyrin domain containing 3 activation.


Subject(s)
Hydrogen Peroxide/metabolism , Inflammasomes/physiology , Shock, Septic/physiopathology , Animals , Antioxidants/therapeutic use , Blotting, Western , Disease Models, Animal , Female , Glutathione Peroxidase/metabolism , Klebsiella Infections/physiopathology , Klebsiella pneumoniae , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia, Bacterial/pathology , Pneumonia, Bacterial/physiopathology , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Shock, Septic/pathology , Glutathione Peroxidase GPX1
20.
Immunity ; 28(3): 391-401, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18313334

ABSTRACT

Tumor necrosis factor receptor-associated factors 2 and 3 (TRAF2 and TRAF3) were shown to function in a cooperative and nonredundant manner to suppress nuclear factor-kappaB2 (NF-kappaB2) activation, gene expression, and survival in mature B cells. In the absence of this suppressive activity, B cells developed independently of the obligatory B cell survival factor, BAFF (B cell-activating factor of the tumor necrosis factor family). However, deletion of either TRAF2 or TRAF3 from the T cell lineage did not promote T cell survival, despite causing extensive NF-kappaB2 activation. This constitutive, lineage-specific suppression of B cell survival by TRAF2 and TRAF3 determines the requirement for BAFF to sustain B cell development in vivo. Binding of BAFF to BAFF receptor reversed TRAF2-TRAF3-mediated suppression of B cell survival by triggering the depletion of TRAF3 protein. This process was TRAF2 dependent, revealing dual roles for TRAF2 in regulating B cell homeostasis.


Subject(s)
B-Cell Activation Factor Receptor/immunology , B-Lymphocytes/cytology , Cell Differentiation/immunology , Signal Transduction/immunology , TNF Receptor-Associated Factor 2/immunology , TNF Receptor-Associated Factor 3/immunology , Animals , B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes/immunology , Cell Survival/immunology , Flow Cytometry , Gene Expression , Gene Expression Profiling , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phenotype , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL