Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Small ; 15(49): e1903460, 2019 12.
Article in English | MEDLINE | ID: mdl-31642183

ABSTRACT

Microbubble activation with focused ultrasound (FUS) facilitates the noninvasive and spatially-targeted delivery of systemically administered therapeutics across the blood-brain barrier (BBB). FUS also augments the penetration of nanoscale therapeutics through brain tissue; however, this secondary effect has not been leveraged. Here, 1 MHz FUS sequences that increase the volume of transfected brain tissue after convection-enhanced delivery of gene-vector "brain-penetrating" nanoparticles were first identified. Next, FUS preconditioning is applied prior to trans-BBB nanoparticle delivery, yielding up to a fivefold increase in subsequent transgene expression. Magnetic resonance imaging (MRI) analyses of tissue temperature and Ktrans confirm that augmented transfection occurs through modulation of parenchymal tissue with FUS. FUS preconditioning represents a simple and effective strategy for markedly improving the efficacy of gene vector nanoparticles in the central nervous system.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Ultrasonic Waves , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Central Nervous System/diagnostic imaging , Central Nervous System/metabolism , Magnetic Resonance Imaging , Microbubbles , Temperature
2.
Nano Lett ; 17(6): 3533-3542, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28511006

ABSTRACT

Therapies capable of decelerating, or perhaps even halting, neurodegeneration in Parkinson's disease (PD) remain elusive. Clinical trials of PD gene therapy testing the delivery of neurotrophic factors, such as the glial cell-line derived neurotrophic factor (GDNF), have been largely ineffective due to poor vector distribution throughout the diseased regions in the brain. In addition, current delivery strategies involve invasive procedures that obviate the inclusion of early stage patients who are most likely to benefit from GDNF-based gene therapy. Here, we introduce a two-pronged treatment strategy, composed of MR image-guided focused ultrasound (FUS) and brain-penetrating nanoparticles (BPN), that provides widespread but targeted GDNF transgene expression in the brain following systemic administration. MR image-guided FUS allows circulating gene vectors to partition into the brain tissue by noninvasive and transient opening of the blood-brain barrier (BBB) within the areas where FUS is applied. Once beyond the BBB, BPN provide widespread and uniform GDNF expression throughout the targeted brain tissue. After only a single treatment, our strategy led to therapeutically relevant levels of GDNF protein content in the FUS-targeted regions in the striatum of the 6-OHDA-induced rat model of PD, which lasted at least up to 10 weeks. Importantly, our strategy restored both dopamine levels and dopaminergic neuron density and reversed behavioral indicators of PD-associated motor dysfunction with no evidence of local or systemic toxicity. Our combinatorial approach overcomes limitations of current delivery strategies, thereby potentially providing a novel means to treat PD.


Subject(s)
Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Glial Cell Line-Derived Neurotrophic Factor/genetics , Parkinson Disease/therapy , Animals , Biological Transport , Brain/metabolism , Dopamine/metabolism , Gene Transfer Techniques , Genetic Vectors , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Magnetic Resonance Imaging , Nanoparticles/chemistry , Parkinson Disease/genetics , Parkinson Disease/metabolism , Particle Size , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Rats , Ultrasonic Waves
3.
Sci Adv ; 6(18): eaay1344, 2020 05.
Article in English | MEDLINE | ID: mdl-32494662

ABSTRACT

The delivery of systemically administered gene therapies to brain tumors is exceptionally difficult because of the blood-brain barrier (BBB) and blood-tumor barrier (BTB). In addition, the adhesive and nanoporous tumor extracellular matrix hinders therapeutic dispersion. We first developed the use of magnetic resonance image (MRI)-guided focused ultrasound (FUS) and microbubbles as a platform approach for transfecting brain tumors by targeting the delivery of systemically administered "brain-penetrating" nanoparticle (BPN) gene vectors across the BTB/BBB. Next, using an MRI-based transport analysis, we determined that after FUS-mediated BTB/BBB opening, mean interstitial flow velocity magnitude doubled, with "per voxel" flow directions changing by an average of ~70° to 80°. Last, we observed that FUS-mediated BTB/BBB opening increased the dispersion of directly injected BPNs through tumor tissue by >100%. We conclude that FUS-mediated BTB/BBB opening yields markedly augmented interstitial tumor flow that, in turn, plays a critical role in enhancing BPN transport through tumor tissue.


Subject(s)
Brain Neoplasms , Nanoparticles , Blood-Brain Barrier , Brain/diagnostic imaging , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Humans , Magnetic Resonance Imaging/methods , Microbubbles , Transfection
4.
Bioorg Med Chem ; 17(4): 1527-33, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19195901

ABSTRACT

Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC(50) values from 30 nM to 1.6 micrOM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents.


Subject(s)
Antimalarials/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Pyrimidinones/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Amides/pharmacology , Animals , Erythrocytes/parasitology , HSP70 Heat-Shock Proteins/metabolism , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Models, Molecular , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism
5.
J Control Release ; 223: 109-117, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26732553

ABSTRACT

Gene therapy holds promise for the treatment of many pathologies of the central nervous system (CNS), including brain tumors and neurodegenerative diseases. However, the delivery of systemically administered gene carriers to the CNS is hindered by both the blood-brain barrier (BBB) and the nanoporous and electrostatically charged brain extracelluar matrix (ECM), which acts as a steric and adhesive barrier. We have previously shown that these physiological barriers may be overcome by, respectively, opening the BBB with MR image-guided focused ultrasound (FUS) and microbubbles and using highly compact "brain penetrating" nanoparticles (BPN) coated with a dense polyethylene glycol corona that prevents adhesion to ECM components. Here, we tested whether this combined approach could be utilized to deliver systemically administered DNA-bearing BPN (DNA-BPN) across the BBB and mediate localized, robust, and sustained transgene expression in the rat brain. Systemically administered DNA-BPN delivered through the BBB with FUS led to dose-dependent transgene expression only in the FUS-treated region that was evident as early as 24h post administration and lasted for at least 28days. In the FUS-treated region ~42% of all cells, including neurons and astrocytes, were transfected, while less than 6% were transfected in the contralateral non-FUS treated hemisphere. Importantly, this was achieved without any sign of toxicity or astrocyte activation. We conclude that the image-guided delivery of DNA-BPN with FUS and microbubbles constitutes a safe and non-invasive strategy for targeted gene therapy to the brain.


Subject(s)
Brain/metabolism , DNA/administration & dosage , Gene Transfer Techniques , Microbubbles , Nanoparticles/administration & dosage , Ultrasonic Waves , Animals , DNA/chemistry , Female , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Rats, Sprague-Dawley
6.
J Control Release ; 219: 61-75, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26362698

ABSTRACT

The blood-brain barrier (BBB) remains one of the most significant limitations to treatments of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases and psychiatric disorders. It is now well-established that focused ultrasound (FUS) in conjunction with contrast agent microbubbles may be used to non-invasively and temporarily disrupt the BBB, allowing localized delivery of systemically administered therapeutic agents as large as 100nm in size to the CNS. Importantly, recent technological advances now permit FUS application through the intact human skull, obviating the need for invasive and risky surgical procedures. When used in combination with magnetic resonance imaging, FUS may be applied precisely to pre-selected CNS targets. Indeed, FUS devices capable of sub-millimeter precision are currently in several clinical trials. FUS mediated BBB disruption has the potential to fundamentally change how CNS diseases are treated, unlocking potential for combinatorial treatments with nanotechnology, markedly increasing the efficacy of existing therapeutics that otherwise do not cross the BBB effectively, and permitting safe repeated treatments. This article comprehensively reviews recent studies on the targeted delivery of therapeutics into the CNS with FUS and offers perspectives on the future of this technology.


Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , Ultrasonic Waves , Animals , Blood-Brain Barrier/metabolism , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polymers/administration & dosage , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL