Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Annu Rev Immunol ; 41: 317-342, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126419

ABSTRACT

Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.


Subject(s)
Allergy and Immunology , Immunity , Metabolism , Animals , Humans , Systems Biology
2.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031005

ABSTRACT

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Subject(s)
Cellular Microenvironment/immunology , Dendritic Cells/immunology , Immunity, Innate , Mitochondria/immunology , Reactive Oxygen Species/immunology , Unfolded Protein Response/immunology , Animals , Cellular Microenvironment/genetics , Citric Acid Cycle/genetics , Citric Acid Cycle/immunology , Dendritic Cells/pathology , Hexokinase/genetics , Hexokinase/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/immunology
3.
Immunity ; 56(12): 2836-2854.e9, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37963457

ABSTRACT

Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , T-Lymphocyte Subsets , Aging , Receptors, Antigen, T-Cell/metabolism , Granzymes/metabolism
4.
Immunity ; 54(1): 99-115.e12, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271118

ABSTRACT

Systematic understanding of immune aging on a whole-body scale is currently lacking. We characterized age-associated alterations in immune cells across multiple mouse organs using single-cell RNA and antigen receptor sequencing and flow cytometry-based validation. We defined organ-specific and common immune alterations and identified a subpopulation of age-associated granzyme K (GZMK)-expressing CD8+ T (Taa) cells that are distinct from T effector memory (Tem) cells. Taa cells were highly clonal, had specific epigenetic and transcriptional signatures, developed in response to an aged host environment, and expressed markers of exhaustion and tissue homing. Activated Taa cells were the primary source of GZMK, which enhanced inflammatory functions of non-immune cells. In humans, proportions of the circulating GZMK+CD8+ T cell population that shares transcriptional and epigenetic signatures with mouse Taa cells increased during healthy aging. These results identify GZMK+ Taa cells as a potential target to address age-associated dysfunctions of the immune system.


Subject(s)
Aging/physiology , CD8-Positive T-Lymphocytes/physiology , Immune System/physiology , Inflammation/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Animals , Cells, Cultured , Clone Cells , Cytotoxicity, Immunologic , Female , Gene Expression Profiling , Granzymes/metabolism , Humans , Immunologic Memory , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
7.
J Hepatol ; 79(4): 898-909, 2023 10.
Article in English | MEDLINE | ID: mdl-37230231

ABSTRACT

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Subject(s)
Gastric Bypass , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Gastric Bypass/methods , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/surgery , Transcriptome , Obesity/complications , Cholesterol , Homeostasis , Inflammation/complications , Obesity, Morbid/complications
8.
Immunol Cell Biol ; 100(3): 186-204, 2022 03.
Article in English | MEDLINE | ID: mdl-35148436

ABSTRACT

Anaphylatoxin C3a is a small signaling polypeptide that is generated during complement activation. C3a is involved in the regulation of various innate and adaptive immune system processes; however, the role of C3a in macrophage differentiation and polarization is poorly elucidated. Here we showed that C3a impairs alternative M2 polarization of human macrophages and suppressed CD206, IL1Ra and CCL22 expression. C3a leads to a decrease of nuclear receptor PPARγ expression via the ERK1/2 signaling pathway, resulting in repressed PPARγ-dependent activation of CD36, FABP4 and LXRα genes and blunted response to an LXR ligand TO901317. Using small interfering RNA and agonist/antagonist approaches we showed that C3a decreases CD206, IL1Ra and CCL22 transcription at least partly in a PPARγ-dependent manner in M2 macrophages. Moreover, C3a impairs efferocytosis by M2 macrophages and inhibits their migratory activity. By contrast, macrophages treated with C3a during differentiation show blunted response to lipopolysaccharide stimulation owing to downregulation of TLR4 and lipid raft content. At the same time, differentiation of macrophages with C3a does not change M1 polarization in interferon gamma (IFNγ) and IFNγ + lipopolysaccharide-treated macrophages. These data provide a novel role of complement system and C3a in the regulation of M2 macrophage polarizations and suggest crosstalk between C3a, TLR4, PPARγ and LXR signaling pathways.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Anaphylatoxins/metabolism , Humans , Interferon-gamma/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , PPAR gamma/metabolism , Toll-Like Receptor 4/metabolism
9.
Biochemistry (Mosc) ; 87(11): 1252-1259, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36509728

ABSTRACT

Adiponectin is an adipose tissue hormone, participating in energy metabolism and involved in atherogenesis. Previously, it was found that adiponectin increases expression of the APOA1 (apolipoprotein A-1) gene in hepatocytes, but the mechanisms of this effect remained unexplored. Our aim was to investigate the role of adiponectin receptors AdipoR1/R2, AMP-activated protein kinase (AMPK), nuclear peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRs) in mediating the action of adiponectin on hepatic APOA1 expression in human hepatoma HepG2 cells. The level of APOA1 expression was determined by RT-qPCR and ELISA. We showed that the siRNA-mediated knockdown of genes coding for AdipoR1, AdipoR2, AMPK, PPARα, and LXRα and ß prevented adiponectin-induced APOA1 expression in HepG2 cells and demonstrated that interaction of PPARα and LXRs with the APOA1 gene hepatic enhancer is important for the adiponectin-dependent APOA1 transcription. The results of this study point out to the involvement of both types of adiponectin receptors, AMPK, PPARα, and LXRs in the adiponectin-dependent upregulation of the APOA1 expression.


Subject(s)
Adiponectin , PPAR alpha , Humans , PPAR alpha/genetics , PPAR alpha/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Liver X Receptors/genetics , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Hep G2 Cells , Apolipoprotein A-I/genetics , AMP-Activated Protein Kinases/metabolism , Gene Expression
10.
Int J Obes (Lond) ; 45(7): 1607-1617, 2021 07.
Article in English | MEDLINE | ID: mdl-33934108

ABSTRACT

BACKGROUND/OBJECTIVES: Innate lymphoid cells (ILCs) play an important role in the maintenance of immune and metabolic homeostasis in adipose tissue (AT). The crosstalk between AT ILCs and adipocytes and other immune cells coordinates adipocyte differentiation, beiging, glucose metabolism and inflammation. Although the metabolic and homeostatic functions of mouse ILCs have been extensively investigated, little is known about human adipose ILCs and their roles in obesity and insulin resistance (IR). SUBJECTS/METHODS: Here we characterized T and NK cell populations in omental AT (OAT) from women (n = 18) with morbid obesity and varying levels of IR and performed an integrated analysis of metabolic parameters and adipose tissue transcriptomics. RESULTS: In OAT, we found a distinct population of CD56-NKp46+EOMES+ NK cells characterized by expression of cytotoxic molecules, pro-inflammatory cytokines, and markers of cell activation. AT IFNγ+ NK cells, but not CD4, CD8 or γδ T cells, were positively associated with glucose levels, glycated hemoglobin (HbA1c) and IR. AT NK cells were linked to a pro-inflammatory gene expression profile in AT and developed an effector phenotype in response to IL-12 and IL-15. Moreover, integrated transcriptomic analysis revealed a potential implication of AT IFNγ+ NK cells in controlling adipose tissue inflammation, remodeling, and lipid metabolism. CONCLUSIONS: Our results suggest that a distinct IFNγ-producing NK cell subset is involved in metabolic homeostasis in visceral AT in humans with obesity and may be a potential target for therapy of IR.


Subject(s)
Hyperglycemia/metabolism , Insulin Resistance/physiology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Obesity, Morbid/metabolism , Adult , Cells, Cultured , Female , Humans , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/metabolism , Male , Middle Aged , Young Adult
11.
Mol Cell Biochem ; 448(1-2): 211-223, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29442267

ABSTRACT

Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRß by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRß binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.


Subject(s)
Apolipoprotein A-I/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Liver X Receptors/metabolism , Macrophages/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , PPAR alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Macrophages/cytology , Monocytes/cytology , THP-1 Cells
12.
J Cell Biochem ; 117(9): 2010-22, 2016 09.
Article in English | MEDLINE | ID: mdl-26813964

ABSTRACT

Apolipoprotein A-I (ApoA-I) is the main anti-atherogenic component of human high-density lipoproteins (HDL). ApoA-I gene expression is regulated by several nuclear receptors, which are the sensors for metabolic changes during development of cardiovascular diseases. Activation of nuclear receptor PPARγ has been shown to impact lipid metabolism as well as inflammation. Here, we have shown that synthetic PPARγ agonist GW1929 decreases both ApoA-I mRNA and protein levels in HepG2 cells and the effect of GW1929 on apoA-I gene transcription depends on PPARγ. PPARγ binds to the sites A and C within the hepatic enhancer of apoA-I gene and the negative regulation of apoA-I gene transcription by PPARγ appears to be realized via the site C (-134 to -119). Ligand activation of PPARγ leads to an increase of LXRß and a decrease of PPARα binding to the apoA-I gene hepatic enhancer in HepG2 cells. GW1929 abolishes the TNFα-mediated decrease of ApoA-I mRNA expression in both HepG2 and Caco-2 cells but does not block TNFα-mediated inhibition of ApoA-I protein secretion by HepG2 cells. These data demonstrate that complex of PPARγ with GW1929 is a negative regulator involved in the control of ApoA-I expression and secretion in human hepatocyte- and enterocyte-like cells. J. Cell. Biochem. 117: 2010-2022, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Apolipoprotein A-I/biosynthesis , Down-Regulation , Enhancer Elements, Genetic , Enterocytes/metabolism , Hepatocytes/metabolism , PPAR gamma/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apolipoprotein A-I/genetics , Benzophenones/pharmacology , Caco-2 Cells , Hep G2 Cells , Humans , Liver X Receptors/genetics , Liver X Receptors/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , Tumor Necrosis Factor-alpha/genetics , Tyrosine/analogs & derivatives , Tyrosine/pharmacology
13.
J Biol Chem ; 288(3): 1726-38, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23168409

ABSTRACT

Complement C3 is a pivotal component of three cascades of complement activation. The liver is the main source of C3 in circulation and expression and secretion of C3 by hepatocytes is increased during acute inflammation. However, the mechanism of the regulation of the C3 gene in hepatocytes is not well elucidated. We showed that the C3 gene is the direct target for peroxisome proliferator-activated receptor α (PPARα) in human hepatoma HepG2 cells and mouse liver. Using PPARα siRNA and synthetic PPARα agonist WY-14643 and antagonist MK886 we showed that activation of PPARα results in up-regulation of C3 gene expression and protein secretion by HepG2 cells. The PPAR response element (PPRE), which is able to bind PPARα in vitro and in vivo, was found in the human C3 promoter. PPRE is conserved between human and mouse, and WY-14643 stimulates mouse C3 expression in the liver. TNFα increases C3 gene via NF-κB and, to a lesser extent, MEK1/2 signaling pathways, whereas TNFα-mediated stimulation of C3 protein secretion depends on activation of MEK1/2, p38, and JNK in HepG2 cells. Activation of PPARα abolishes TNFα-mediated up-regulation of C3 gene expression and protein secretion due to interference with NF-κB via PPRE-dependent mechanism in HepG2 cells. TNFα decreases PPARα protein content via NF-κB and MEK1/2 signaling pathways and inhibits PPARα binding with the human C3 promoter in HepG2 cells. These results suggest novel mechanism controlling C3 expression in hepatocytes during acute phase inflammation and demonstrate a crosstalk between PPARα and TNFα in the regulation of complement system.


Subject(s)
Complement C3/genetics , Hepatocytes/metabolism , Inflammation/genetics , PPAR alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Animals , Complement C3/agonists , Complement C3/antagonists & inhibitors , Complement C3/immunology , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/immunology , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , PPAR alpha/immunology , Peroxisome Proliferators/pharmacology , Protein Binding , Pyrimidines/pharmacology , Response Elements , Signal Transduction , Transfection , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
14.
J Biol Chem ; 287(8): 5954-68, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22194611

ABSTRACT

Complement C3 is a pivotal component of three cascades of complement activation. C3 is expressed in human atherosclerotic lesions and is involved in atherogenesis. However, the mechanism of C3 accumulation in atherosclerotic lesions is not well elucidated. We show that acetylated low density lipoprotein and oxidized low density lipoprotein (oxLDL) increase C3 gene expression and protein secretion by human macrophages. Modified LDL (mLDL)-mediated activation of C3 expression mainly depends on liver X receptor (LXR) and partly on Toll-like receptor 4 (TLR4), whereas C3 secretion is increased due to TLR4 activation by mLDL. LXR agonist TO901317 stimulates C3 gene expression in human monocyte-macrophage cells but not in human hepatoma (HepG2) cells. We find LXR-responsive element inside of the promoter region of the human C3 gene, which binds to LXRß in macrophages but not in HepG2 cells. We show that C3 expression and secretion is decreased in IL-4-treated (M2) and increased in IFNγ/LPS-stimulated (M1) human macrophages as compared with resting macrophages. LXR agonist TO901317 potentiates LPS-induced C3 gene expression and protein secretion in macrophages, whereas oxLDL differently modulates LPS-mediated regulation of C3 in M1 or M2 macrophages. Treatment of human macrophages with anaphylatoxin C3a results in stimulation of C3 transcription and secretion as well as increased oxLDL accumulation and augmented oxLDL-mediated up-regulation of the C3 gene. These data provide a novel mechanism of C3 gene regulation in macrophages and suggest new aspects of cross-talk between mLDL, C3, C3a, and TLR4 during development of atherosclerotic lesions.


Subject(s)
Complement C3/genetics , Complement C3/metabolism , Gene Expression Regulation/drug effects , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , Orphan Nuclear Receptors/metabolism , Toll-Like Receptor 4/metabolism , Base Sequence , Biological Transport , Complement C3/biosynthesis , Hep G2 Cells , Humans , Lipoproteins, LDL/metabolism , Liver X Receptors , MAP Kinase Signaling System/drug effects , Macrophages/cytology , Macrophages/metabolism , NF-kappa B/metabolism , Orphan Nuclear Receptors/agonists , Promoter Regions, Genetic/genetics , Transcription, Genetic/drug effects
15.
FASEB J ; 26(5): 2019-30, 2012 May.
Article in English | MEDLINE | ID: mdl-22271762

ABSTRACT

Apolipoprotein A-I (ApoA-I) is the main functional protein component of human high-density lipoproteins. ApoA-I shows various anti-inflammatory and atheroprotective properties toward macrophages; however, endogenous apoA-I expression has not been investigated in macrophages. We have shown that endogenous apoA-I gene is expressed in human macrophages at both mRNA and protein levels. Endogenous ApoA-I is localized in intracellular vesicles and at the external side of the plasma membrane in association with ATP-binding cassette transporter A1 (ABCA1) and lipid rafts in macrophages. We have shown that endogenous ApoA-I stabilizes ABCA1, moreover, down-regulation of ApoA-I by siRNA results in an increase of Toll-like receptor 4 (TLR4) mRNA and membrane surface protein expression, as well as an enhancement of bacterial lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and inducible nitric oxide synthase (NOS2) genes in human macrophages. TNF-α stimulates ApoA-I expression and secretion (1.2±0.2 vs. 4.3±0.9 ng/mg total protein) in macrophages. Obtained results suggest that endogenous ApoA-I has anti-inflammatory properties, presumably due to ABCA1 stabilization in macrophages; these results elucidate the cell type-specific mechanism of the TNF-α-mediated regulation of apoA-I gene expression in monocytes and macrophages.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/physiology , Macrophages/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , ATP Binding Cassette Transporter 1 , Animals , Apolipoprotein A-I/genetics , Base Sequence , DNA Primers , Enzyme-Linked Immunosorbent Assay , Humans , Male , Mice , Mice, Inbred C57BL
16.
Mol Metab ; 69: 101686, 2023 03.
Article in English | MEDLINE | ID: mdl-36746333

ABSTRACT

OBJECTIVE: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. METHODS: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice. RESULTS: eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. CONCLUSIONS: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.


Subject(s)
Insulin Resistance , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Glucose/metabolism , Homeostasis , Inflammation/metabolism , Insulin Resistance/physiology , Oxidative Stress , Receptors, Cytoplasmic and Nuclear/metabolism
17.
Cell Rep ; 42(2): 112046, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36708514

ABSTRACT

The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.


Subject(s)
Phagocytes , Single-Cell Analysis , Animals , Mice
18.
Nat Rev Immunol ; 22(8): 484-498, 2022 08.
Article in English | MEDLINE | ID: mdl-34815556

ABSTRACT

Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.


Subject(s)
Aging , Autoimmune Diseases , Animals , Humans , Immune System , Immunity, Innate , Mice
19.
Nat Aging ; 1(6): 535-549, 2021 06.
Article in English | MEDLINE | ID: mdl-37117829

ABSTRACT

We examine the cellular and soluble determinants of coronavirus disease 2019 (COVID-19) relative to aging by performing mass cytometry in parallel with clinical blood testing and plasma proteomic profiling of ~4,700 proteins from 71 individuals with pulmonary disease and 148 healthy donors (25-80 years old). Distinct cell populations were associated with age (GZMK+CD8+ T cells and CD25low CD4+ T cells) and with COVID-19 (TBET-EOMES- CD4+ T cells, HLA-DR+CD38+ CD8+ T cells and CD27+CD38+ B cells). A unique population of TBET+EOMES+ CD4+ T cells was associated with individuals with COVID-19 who experienced moderate, rather than severe or lethal, disease. Disease severity correlated with blood creatinine and urea nitrogen levels. Proteomics revealed a major impact of age on the disease-associated plasma signatures and highlighted the divergent contribution of hepatocyte and muscle secretomes to COVID-19 plasma proteins. Aging plasma was enriched in matrisome proteins and heart/aorta smooth muscle cell-specific proteins. These findings reveal age-specific and disease-specific changes associated with COVID-19, and potential soluble mediators of the physiological impact of COVID-19.


Subject(s)
COVID-19 , Healthy Aging , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Proteomics
20.
Cell Rep ; 34(10): 108756, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691097

ABSTRACT

Itaconate is a unique regulatory metabolite that is induced upon Toll-like receptor (TLR) stimulation in myeloid cells. Here, we demonstrate major inflammatory tolerance and cell death phenotypes associated with itaconate production in activated macrophages. We show that endogenous itaconate is a key regulator of the signal 2 of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation after long lipopolysaccharide (LPS) priming, which establishes tolerance to late NLRP3 inflammasome activation. We show that itaconate acts synergistically with inducible nitric oxide synthase (iNOS) and that the ability of various TLR ligands to establish NLRP3 inflammasome tolerance depends on the pattern of co-expression of IRG1 and iNOS. Mechanistically, itaconate accumulation upon prolonged inflammatory stimulation prevents full caspase-1 activation and processing of gasdermin D, which we demonstrate to be post-translationally modified by endogenous itaconate. Altogether, our data demonstrate that metabolic rewiring in inflammatory macrophages establishes tolerance to NLRP3 inflammasome activation that, if uncontrolled, can result in pyroptotic cell death and tissue damage.


Subject(s)
Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Succinates/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Caspase 1/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Poly I-C/pharmacology , Pyroptosis/drug effects , Sepsis/chemically induced , Sepsis/metabolism , Sepsis/pathology , Signal Transduction/drug effects , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL