Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Biol ; 21(6): e3002140, 2023 06.
Article in English | MEDLINE | ID: mdl-37262014

ABSTRACT

Adapting actions to changing goals and environments is central to intelligent behavior. There is evidence that the basal ganglia play a crucial role in reinforcing or adapting actions depending on their outcome. However, the corresponding electrophysiological correlates in the basal ganglia and the extent to which these causally contribute to action adaptation in humans is unclear. Here, we recorded electrophysiological activity and applied bursts of electrical stimulation to the subthalamic nucleus, a core area of the basal ganglia, in 16 patients with Parkinson's disease (PD) on medication using temporarily externalized deep brain stimulation (DBS) electrodes. Patients as well as 16 age- and gender-matched healthy participants attempted to produce forces as close as possible to a target force to collect a maximum number of points. The target force changed over trials without being explicitly shown on the screen so that participants had to infer target force based on the feedback they received after each movement. Patients and healthy participants were able to adapt their force according to the feedback they received (P < 0.001). At the neural level, decreases in subthalamic beta (13 to 30 Hz) activity reflected poorer outcomes and stronger action adaptation in 2 distinct time windows (Pcluster-corrected < 0.05). Stimulation of the subthalamic nucleus reduced beta activity and led to stronger action adaptation if applied within the time windows when subthalamic activity reflected action outcomes and adaptation (Pcluster-corrected < 0.05). The more the stimulation volume was connected to motor cortex, the stronger was this behavioral effect (Pcorrected = 0.037). These results suggest that dynamic modulation of the subthalamic nucleus and interconnected cortical areas facilitates adaptive behavior.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Basal Ganglia , Adaptation, Psychological
2.
Mol Psychiatry ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806692

ABSTRACT

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

3.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402912

ABSTRACT

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Subject(s)
Dystonia , Dystonic Disorders , Mice , Animals , Dystonia/genetics , Gene-Environment Interaction , Dystonic Disorders/genetics , Corpus Striatum/metabolism , Genetic Predisposition to Disease
4.
Neurobiol Dis ; 194: 106462, 2024 May.
Article in English | MEDLINE | ID: mdl-38442845

ABSTRACT

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Subject(s)
Dystonia , Dystonic Disorders , Fenofibrate , Rats , Animals , Dystonia/genetics , Dystonia/metabolism , Rodentia/metabolism , Fluorodeoxyglucose F18 , PPAR alpha/metabolism , Dystonic Disorders/genetics , Brain/metabolism , Energy Metabolism , Glucose
5.
Hum Brain Mapp ; 45(1): e26536, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38087950

ABSTRACT

Recent electroencephalography (EEG) studies have shown that patterns of brain activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control groups. These differences can be interrogated by examining EEG microstates, which are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying the temporal properties of the four canonical microstates can elucidate how the dynamics of functional brain networks are altered in neurological conditions. Here we have analysed the properties of microstates to detect and quantify signal-based abnormality in ALS. High-density resting-state EEG data from 129 people with ALS and 78 HC were recorded longitudinally over a 24-month period. EEG topographies were extracted at instances of peak global field power to identify four microstate classes (labelled A-D) using K-means clustering. Each EEG topography was retrospectively associated with a microstate class based on global map dissimilarity. Changes in microstate properties over the course of the disease were assessed in people with ALS and compared with changes in clinical scores. The topographies of microstate classes remained consistent across participants and conditions. Differences were observed in coverage, occurrence, duration, and transition probabilities between ALS and control groups. The duration of microstate class B and coverage of microstate class C correlated with lower limb functional decline. The transition probabilities A to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those with cognitive and behavioural impairments. Microstate characteristics also significantly changed over the course of the disease. Examining the temporal dependencies in the sequences of microstates revealed that the symmetry and stationarity of transition matrices were increased in people with late-stage ALS. These alterations in the properties of EEG microstates in ALS may reflect abnormalities within the sensory network and higher-order networks. Microstate properties could also prospectively predict symptom progression in those with cognitive impairments.


Subject(s)
Amyotrophic Lateral Sclerosis , Cognitive Dysfunction , Humans , Electroencephalography , Retrospective Studies , Brain , Brain Mapping , Cognitive Dysfunction/etiology
6.
Mov Disord ; 39(5): 778-787, 2024 May.
Article in English | MEDLINE | ID: mdl-38532269

ABSTRACT

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Electromyography , Levodopa , Parkinson Disease , Tremor , Humans , Parkinson Disease/physiopathology , Parkinson Disease/complications , Parkinson Disease/drug therapy , Male , Female , Tremor/physiopathology , Tremor/etiology , Middle Aged , Aged , Levodopa/therapeutic use , Levodopa/pharmacology , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Beta Rhythm/physiology , Beta Rhythm/drug effects , Electroencephalography/methods , Antiparkinson Agents/therapeutic use
7.
Eur J Neurol ; 31(4): e16201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38235854

ABSTRACT

BACKGROUND AND PURPOSE: Resting-state electroencephalography (EEG) holds promise for assessing brain networks in amyotrophic lateral sclerosis (ALS). We investigated whether neural ß-band oscillations in the sensorimotor network could serve as an objective quantitative measure of progressive motor impairment and functional disability in ALS patients. METHODS: Resting-state EEG was recorded in 18 people with ALS and 38 age- and gender-matched healthy controls. We estimated source-localized ß-band spectral power in the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper motor neuron scores, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score, fine motor function (FMF) subscore, and progression rate. Correlations between clinical scores and ß-band power were analysed and corrected using a false discovery rate of q = 0.05. RESULTS: ß-Band power was significantly lower in people with ALS than controls (p = 0.004), and correlated with LMN score (R = -0.65, p = 0.013), FMF subscore (R = -0.53, p = 0.036), and FMF progression rate (R = 0.52, p = 0.036). CONCLUSIONS: ß-Band spectral power in the sensorimotor cortex reflects clinically evaluated motor impairment in ALS. This technology merits further investigation as a biomarker of progressive functional disability.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Electroencephalography , Motor Neurons , Brain , Brain Mapping
8.
Exp Brain Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842754

ABSTRACT

OBJECTIVE: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.

9.
Cereb Cortex ; 33(13): 8712-8723, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37143180

ABSTRACT

Primary lateral sclerosis (PLS) is a slowly progressing disorder, which is characterized primarily by the degeneration of upper motor neurons (UMNs) in the primary motor area (M1). It is not yet clear how the function of sensorimotor networks beyond M1 are affected by PLS. The aim of this study was to use cortico-muscular coherence (CMC) to characterize the oscillatory drives between cortical regions and muscles during a motor task in PLS and to examine the relationship between CMC and the level of clinical impairment. We recorded EEG and EMG from hand muscles in 16 participants with PLS and 18 controls during a pincer-grip task. In PLS, higher CMC was observed over contralateral-M1 (α- and γ-band) and ipsilateral-M1 (ß-band) compared with controls. Significant correlations between clinically assessed UMN scores and CMC measures showed that higher clinical impairment was associated with lower CMC over contralateral-M1/frontal areas, higher CMC over parietal area, and both higher and lower CMC (in different bands) over ipsilateral-M1. The results suggest an atypical engagement of both contralateral and ipsilateral M1 during motor activity in PLS, indicating the presence of pathogenic and/or adaptive/compensatory alterations in neural activity. The findings demonstrate the potential of CMC for identifying dysfunction within the sensorimotor networks in PLS.


Subject(s)
Motor Cortex , Motor Neuron Disease , Humans , Electromyography/methods , Motor Cortex/physiology , Muscle, Skeletal/physiology , Hand
10.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Article in English | MEDLINE | ID: mdl-38086346

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Quality of Life , Brain , Mental Disorders/therapy , Parkinson Disease/therapy
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34479997

ABSTRACT

Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement-reconstructed from MRI-is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood-CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.


Subject(s)
Choroid Plexus/diagnostic imaging , Multiple Sclerosis/physiopathology , Neuroinflammatory Diseases/diagnostic imaging , Adult , Animals , Blood-Brain Barrier/physiology , Brain/physiology , Choroid Plexus/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnostic imaging , Proteomics/methods
12.
Neurobiol Dis ; 179: 106055, 2023 04.
Article in English | MEDLINE | ID: mdl-36849015

ABSTRACT

Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.


Subject(s)
Myoclonic Epilepsy, Juvenile , Female , Humans , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/drug therapy , Brain/diagnostic imaging , Electroencephalography/methods , Seizures , Basal Ganglia
13.
Ann Neurol ; 91(2): 192-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34967456

ABSTRACT

OBJECTIVE: Fatigue is a frequent and severe symptom in multiple sclerosis (MS), but its pathophysiological origin remains incompletely understood. We aimed to examine the predictive value of subcortical gray matter volumes for fatigue severity at disease onset and after 4 years by applying structural equation modeling (SEM). METHODS: This multicenter cohort study included 601 treatment-naive patients with MS after the first demyelinating event. All patients underwent a standardized 3T magnetic resonance imaging (MRI) protocol. A subgroup of 230 patients with available clinical follow-up data after 4 years was also analyzed. Associations of subcortical volumes (included into SEM) with MS-related fatigue were studied regarding their predictive value. In addition, subcortical regions that have a central role in the brain network (hubs) were determined through structural covariance network (SCN) analysis. RESULTS: Predictive causal modeling identified volumes of the caudate (s [standardized path coefficient] = 0.763, p = 0.003 [left]; s = 0.755, p = 0.006 [right]), putamen (s = 0.614, p = 0.002 [left]; s = 0.606, p = 0.003 [right]) and pallidum (s = 0.606, p = 0.012 [left]; s = 0.606, p = 0.012 [right]) as prognostic factors for fatigue severity in the cross-sectional cohort. Moreover, the volume of the pons was additionally predictive for fatigue severity in the longitudinal cohort (s = 0.605, p = 0.013). In the SCN analysis, network hubs in patients with fatigue worsening were detected in the putamen (p = 0.008 [left]; p = 0.007 [right]) and pons (p = 0.0001). INTERPRETATION: We unveiled predictive associations of specific subcortical gray matter volumes with fatigue in an early and initially untreated MS cohort. The colocalization of these subcortical structures with network hubs suggests an early role of these brain regions in terms of fatigue evolution. ANN NEUROL 2022;91:192-202.


Subject(s)
Brain/diagnostic imaging , Fatigue/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Adult , Cohort Studies , Cross-Sectional Studies , Demyelinating Diseases/diagnostic imaging , Fatigue/etiology , Fatigue/physiopathology , Female , Follow-Up Studies , Gray Matter/diagnostic imaging , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Pons/diagnostic imaging , Predictive Value of Tests , Prognosis , Putamen/diagnostic imaging , Young Adult
14.
Eur J Neurol ; 30(2): 453-462, 2023 02.
Article in English | MEDLINE | ID: mdl-36318271

ABSTRACT

BACKGROUND AND PURPOSE: Brain pseudoatrophy has been shown to play a pivotal role in the interpretation of brain atrophy measures during the first year of disease-modifying therapy in multiple sclerosis. Whether pseudoatrophy also affects the spinal cord remains unclear. The aim of this study was to analyze the extent of pseudoatrophy in the upper spinal cord during the first 2 years after therapy initiation and compare this to the brain. METHODS: A total of 129 patients from a prospective longitudinal multicentric national cohort study for whom magnetic resonance imaging scans at baseline, 12 months, and 24 months were available were selected for brain and spinal cord volume quantification. Annual percentage brain volume and cord area change were calculated using SIENA (Structural Image Evaluation of Normalized Atrophy) and NeuroQLab, respectively. Linear mixed model analyses were performed to compare patients on interferon-beta therapy (n = 84) and untreated patients (n = 45). RESULTS: Patients treated with interferon-beta demonstrated accelerated annual percentage brain volume and cervical cord area change in the first year after treatment initiation, whereas atrophy rates stabilized to a similar and not significantly different level compared to untreated patients during the second year. CONCLUSIONS: These results suggest that pseudoatrophy occurs not only in the brain, but also in the spinal cord during the first year of interferon-beta treatment.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Interferon-beta/adverse effects , Cohort Studies , Prospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology
15.
Brain ; 145(2): 621-631, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34791079

ABSTRACT

Amyotrophic lateral sclerosis is a devastating disease characterized primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. Amyotrophic lateral sclerosis is both clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria) and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis. Recently, we have shown that resting-state EEG can reliably and quantitatively capture abnormal patterns of motor and cognitive network disruption in amyotrophic lateral sclerosis. These network disruptions have been identified across multiple frequency bands, and using measures of neural activity (spectral power) and connectivity (comodulation of activity by amplitude envelope correlation and synchrony by imaginary coherence) on source-localized brain oscillations from high-density EEG. Using data-driven methods (similarity network fusion and spectral clustering), we have now undertaken a clustering analysis to identify disease subphenotypes and to determine whether different patterns of disruption are predictive of disease outcome. We show that amyotrophic lateral sclerosis patients (n = 95) can be subgrouped into four phenotypes with distinct neurophysiological profiles. These clusters are characterized by varying degrees of disruption in the somatomotor (α-band synchrony), frontotemporal (ß-band neural activity and γl-band synchrony) and frontoparietal (γl-band comodulation) networks, which reliably correlate with distinct clinical profiles and different disease trajectories. Using an in-depth stability analysis, we show that these clusters are statistically reproducible and robust, remain stable after reassessment using a follow-up EEG session, and continue to predict the clinical trajectory and disease outcome. Our data demonstrate that novel phenotyping using neuroelectric signal analysis can distinguish disease subtypes based exclusively on different patterns of network disturbances. These patterns may reflect underlying disease neurobiology. The identification of amyotrophic lateral sclerosis subtypes based on profiles of differential impairment in neuronal networks has clear potential in future stratification for clinical trials. Advanced network profiling in amyotrophic lateral sclerosis can also underpin new therapeutic strategies that are based on principles of neurobiology and designed to modulate network disruption.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Brain , Electroencephalography , Humans , Neurons
16.
Cereb Cortex ; 32(12): 2621-2634, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34689188

ABSTRACT

Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in ß- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA. We found a strong functional ß-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in mice. We observed that in both humans and mice the direction of information flow mediated by ß- and γ-band oscillations was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and physiological PMC-M1 functioning or pathological transformations within this network.


Subject(s)
Motor Cortex , Animals , Electroencephalography , Forelimb , Mice , Motor Cortex/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
17.
Stroke ; 53(8): 2528-2537, 2022 08.
Article in English | MEDLINE | ID: mdl-35443786

ABSTRACT

BACKGROUND: Strokes in the working-age population represent a relevant share of ischemic strokes and re-employment is a major factor for well-being in these patients. Income differences by sex have been suspected a barrier for women in returning to paid work following ischemic stroke. We aim to identify predictors of (not) returning to paid work in patients with large vessel occlusion treated with mechanical thrombectomy (MT) to identify potential areas of targeted vocational rehabilitation. METHODS: From 6635 patients enrolled in the German Stroke Registry Endovascular Treatment between 2015 and 2019, data of 606 patients of the working population who survived large vessel occlusion at least 90 days past MT were compared based on employment status at day 90 follow-up. Univariate analysis, multiple logistic regression and analyses of area under the curve were performed to identify predictors of re-employment. RESULTS: We report 35.6% of patients being re-employed 3 months following MT (median age 54.0 years; 36.1% of men, 34.5% of women [P=0.722]). We identified independent negative predictors against re-employment being female sex (odds ratio [OR], 0.427 [95% CI, 0.229-0.794]; P=0.007), higher National Institutes of Health Stroke Scale (NIHSS) score 24 hours after MT (OR, 0.775 [95% CI, 0.705-0.852]; P<0.001), large vessel occlusion due to large-artery atherosclerosis (OR, 0.558 [95% CI, 0.312-0.997]; P=0.049) and longer hospital stay (OR, 0.930 [95% CI, 0.868-0.998]; P=0.043). Positive predictors favoring re-employment were excellent functional outcome (modified Rankin Scale score of 0-1) at 90 day follow-up (OR, 11.335 [95% CI, 4.864-26.415]; P<0.001) and combined treatment with intravenous thrombolysis (OR, 1.904 [95% CI, 1.046-3.466]; P=0.035). Multiple regression modeling increased predictive power of re-employment status significantly over prediction by best single functional outcome parameter (National Institutes of Health Stroke Scale 24 hours after MT ≤5; R2: 0.582 versus 0.432; area under the receiver operating characteristic curve: 0.887 versus 0.835, P<0.001). CONCLUSIONS: There is more to re-employment after MT than functional outcome alone. In particular, attention should be paid to possible systemic barriers deterring women from resuming paid work. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03356392.


Subject(s)
Brain Ischemia , Endovascular Procedures , Stroke , Employment , Endovascular Procedures/adverse effects , Female , Humans , Male , Middle Aged , Stroke/epidemiology , Thrombectomy/adverse effects , Treatment Outcome
18.
J Neuroinflammation ; 19(1): 119, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610651

ABSTRACT

BACKGROUND: Anxiety, often seen as comorbidity in multiple sclerosis (MS), is a frequent neuropsychiatric symptom and essentially affects the overall disease burden. Here, we aimed to decipher anxiety-related networks functionally connected to atrophied areas in patients suffering from MS. METHODS: Using 3-T MRI, anxiety-related atrophy maps were generated by correlating longitudinal cortical thinning with the severity of anxiety symptoms in MS patients. To determine brain regions functionally connected to these maps, we applied a technique termed "atrophy network mapping". Thereby, the anxiety-related atrophy maps were projected onto a large normative connectome (n = 1000) performing seed-based functional connectivity. Finally, an instructed threat paradigm was conducted with regard to neural excitability and effective connectivity, using transcranial magnetic stimulation combined with high-density electroencephalography. RESULTS: Thinning of the left dorsal prefrontal cortex was the only region that was associated with higher anxiety levels. Atrophy network mapping identified functional involvement of bilateral prefrontal cortex as well as amygdala and hippocampus. Structural equation modeling confirmed that the volumes of these brain regions were significant determinants that influence anxiety symptoms in MS. We additionally identified reduced information flow between the prefrontal cortex and the amygdala at rest, and pathologically increased excitability in the prefrontal cortex in MS patients as compared to controls. CONCLUSION: Anxiety-related prefrontal cortical atrophy in MS leads to a specific network alteration involving structures that resemble known neurobiological anxiety circuits. These findings elucidate the emergence of anxiety as part of the disease pathology and might ultimately enable targeted treatment approaches modulating brain networks in MS.


Subject(s)
Connectome , Multiple Sclerosis , Anxiety/diagnostic imaging , Anxiety/etiology , Atrophy/pathology , Brain Mapping , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Prefrontal Cortex/pathology
19.
Eur J Neurol ; 29(8): 2309-2320, 2022 08.
Article in English | MEDLINE | ID: mdl-35582936

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in multiple sclerosis (MS) patients with concomitant epilepsy. METHODS: From 3-T magnetic resonance imaging scans of 30 MS patients with epilepsy (MSE group; age 41 ± 15 years, 21 females, disease duration 8 ± 6 years, median Expanded Disability Status Scale [EDSS] score 3), 60 MS patients without epilepsy (MS group; age 41 ± 12 years, 35 females, disease duration 6 ± 4 years, EDSS score 2), and 60 healthy subjects (HS group; age 40 ± 13 years, 27 females) the regional volumes of GM lesions and of cortical, subcortical and hippocampal structures were quantified. Network topology and vulnerability were modelled within the graph theoretical framework. Receiver-operating characteristic (ROC) curve analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. RESULTS: Higher lesion volumes within the hippocampus, mesiotemporal cortex and amygdala were detected in the MSE compared to the MS group (all p < 0.05). The MSE group had lower cortical volumes mainly in temporal and parietal areas compared to the MS and HS groups (all p < 0.05). Lower hippocampal tail and presubiculum volumes were identified in both the MSE and MS groups compared to the HS group (all p < 0.05). Network topology in the MSE group was characterized by higher transitivity and assortativity, and higher vulnerability compared to the MS and HS groups (all p < 0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67-0.91]) in discriminating between MSE and MS patients. CONCLUSIONS: High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity for epilepsy occurrence in people with MS.


Subject(s)
Epilepsy , Multiple Sclerosis , Adult , Brain/diagnostic imaging , Brain/pathology , Epilepsy/pathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
20.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613490

ABSTRACT

Intensity of respiratory cortical arousals (RCA) is a pathophysiologic trait in obstructive sleep apnea (OSA) patients. We investigated the brain oscillatory features related to respiratory arousals in moderate and severe OSA. Raw electroencephalography (EEG) data recorded during polysomnography (PSG) of 102 OSA patients (32 females, mean age 51.6 ± 12 years) were retrospectively analyzed. Among all patients, 47 had moderate (respiratory distress index, RDI = 15−30/h) and 55 had severe (RDI > 30/h) OSA. Twenty RCA per sleep stage in each patient were randomly selected and a total of 10131 RCAs were analyzed. EEG signals obtained during, five seconds before and after the occurrence of each arousal were analyzed. The entropy (approximate (ApEn) and spectral (SpEn)) during each sleep stage (N1, N2 and REM) and area under the curve (AUC) of the EEG signal during the RCA was computed. Severe OSA compared to moderate OSA patients showed a significant decrease (p < 0.0001) in the AUC of the EEG signal during the RCA. Similarly, a significant decrease in spectral entropy, both before and after the RCA was observed, was observed in severe OSA patients when compared to moderate OSA patients. Contrarily, the approximate entropy showed an inverse pattern. The highest increase in approximate entropy was found in sleep stage N1. In conclusion, the dynamic range of sensorimotor cortical activity during respiratory arousals is sleep-stage specific, dependent on the frequency of respiratory events and uncoupled from autonomic activation. These findings could be useful for differential diagnosis of severe OSA from moderate OSA.


Subject(s)
Sleep Apnea, Obstructive , Female , Humans , Adult , Middle Aged , Retrospective Studies , Arousal/physiology , Polysomnography , Sleep Stages/physiology
SELECTION OF CITATIONS
SEARCH DETAIL