Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Semin Cell Dev Biol ; 154(Pt C): 261-274, 2024 02 15.
Article in English | MEDLINE | ID: mdl-36379848

ABSTRACT

Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Humans , Epigenesis, Genetic , Neuroinflammatory Diseases , Brain Neoplasms/genetics , Inflammation/genetics , Tumor Microenvironment/genetics
2.
Semin Cancer Biol ; 92: 1-15, 2023 07.
Article in English | MEDLINE | ID: mdl-36958703

ABSTRACT

Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.


Subject(s)
Neoplasms , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm , Forkhead Box Protein M1/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Neoplasms/genetics
3.
Semin Cell Dev Biol ; 124: 114-126, 2022 04.
Article in English | MEDLINE | ID: mdl-34034986

ABSTRACT

The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.


Subject(s)
MicroRNAs , Neoplasms , Apoptosis , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/genetics
4.
Semin Cancer Biol ; 87: 117-126, 2022 12.
Article in English | MEDLINE | ID: mdl-36371025

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant, relatively immune-cold, and deadly subtype of lung cancer. SCLC has been viewed as a single or homogenous disease that includes deletion or inactivation of the two major tumor suppressor genes (TP53 and RB1) as a key hallmark. However, recent sightings suggest the complexity of SCLC tumors that comprises highly dynamic multiple subtypes contributing to high intratumor heterogeneity. Furthermore, the absence of targeted therapies, the understudied tumor immune microenvironment (TIME), and subtype plasticity are also responsible for therapy resistance. Secretory chemokines play a crucial role in immunomodulation by trafficking immune cells to the tumors. Chemokines and cytokines modulate the anti-tumor immune response and wield a pro-/anti-tumorigenic effect on SCLC cells after binding to cognate receptors. In this review, we summarize and highlight recent findings that establish the role of chemokines in SCLC growth and metastasis, and sophisticated intratumor heterogeneity. We also discuss the chemokine networks that are putative targets or modulators for augmenting the anti-tumor immune responses in targeted or chemo-/immuno-therapeutic strategies, and how these combinations may be utilized to conquer SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/metabolism , Chemokines/pharmacology , Chemokines/therapeutic use , Carcinogenesis , Immunity , Tumor Microenvironment/genetics
5.
Semin Cancer Biol ; 83: 57-76, 2022 08.
Article in English | MEDLINE | ID: mdl-33220460

ABSTRACT

Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , DNA Methylation , Epigenesis, Genetic , Humans , Immunotherapy , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology
6.
Semin Cancer Biol ; 86(Pt 3): 914-930, 2022 11.
Article in English | MEDLINE | ID: mdl-34968667

ABSTRACT

Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/prevention & control , Chemokines , Neoplastic Stem Cells , Brain , Tumor Microenvironment , Neoplasm Metastasis
7.
Mol Cancer ; 22(1): 111, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454123

ABSTRACT

The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/therapy , Brain Neoplasms/secondary , Immunotherapy , Tumor Microenvironment
8.
Mol Cancer ; 22(1): 1, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36597126

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS: A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS: Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.


Subject(s)
Lung Neoplasms , MicroRNAs , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Lung Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Forkhead Box Protein M1/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism
9.
Mol Cancer ; 21(1): 113, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538484

ABSTRACT

Brain metastasis (BrM) is a major problem associated with cancer-related mortality, and currently, no specific biomarkers are available in clinical settings for early detection. Liquid biopsy is widely accepted as a non-invasive method for diagnosing cancer and other diseases. We have reviewed the evidence that shows how the molecular alterations are involved in BrM, majorly from breast cancer (BC), lung cancer (LC), and melanoma, with an inception in how they can be employed for biomarker development. We discussed genetic and epigenetic changes that influence cancer cells to breach the blood-brain barrier (BBB) and help to establish metastatic lesions in the uniquely distinct brain microenvironment. Keeping abreast with the recent breakthroughs in the context of various biomolecules detections and identifications, the circulating tumor cells (CTC), cell-free nucleotides, non-coding RNAs, secretory proteins, and metabolites can be pursued in human body fluids such as blood, serum, cerebrospinal fluid (CSF), and urine to obtain potential candidates for biomarker development. The liquid biopsy-based biomarkers can overlay with current imaging techniques to amplify the signal viable for improving the early detection and treatments of occult BrM.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , Liquid Biopsy/methods , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment
10.
Mol Cancer ; 20(1): 54, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33740988

ABSTRACT

Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.


Subject(s)
Biomarkers, Tumor , Genetic Therapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , RNA/genetics , Animals , Antagomirs , Cancer Vaccines , Clinical Studies as Topic , Combined Modality Therapy/methods , Drug Evaluation, Preclinical , Genetic Therapy/trends , Humans , MicroRNAs/genetics , RNA Interference , RNA, Antisense , RNA, Messenger/genetics , Treatment Outcome
12.
Exp Mol Med ; 56(6): 1450-1460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825648

ABSTRACT

Non-small cell lung carcinoma (NSCLC) exhibits a heightened propensity for brain metastasis, posing a significant clinical challenge. Mucin 5ac (MUC5AC) plays a pivotal role in the development of lung adenocarcinoma (LUAD); however, its role in causing brain metastases remains unknown. In this study, we aimed to investigate the contribution of MUC5AC to brain metastasis in patients with LUAD utilizing various brain metastasis models. Our findings revealed a substantial increase in the MUC5AC level in LUAD brain metastases (LUAD-BrM) samples and brain-tropic cell lines compared to primary samples or parental control cell lines. Intriguingly, depletion of MUC5AC in brain-tropic cells led to significant reductions in intracranial metastasis and tumor growth, and improved survival following intracardiac injection, in contrast to the observations in the control groups. Proteomic analysis revealed that mechanistically, MUC5AC depletion resulted in decreased expression of metastasis-associated molecules. There were increases in epithelial-to-mesenchymal transition, tumor invasiveness, and metastasis phenotypes in tumors with high MUC5AC expression. Furthermore, immunoprecipitation and proteomic analysis revealed a novel interaction of MUC5AC with Annexin A2 (ANXA2), which activated downstream matrix metalloproteases and facilitated extracellular matrix degradation to promote metastasis. Disrupting MUC5AC-ANXA2 signaling with a peptide inhibitor effectively abrogated the metastatic process. Additionally, treatment of tumor cells with an astrocyte-conditioned medium or the chemokine CCL2 resulted in upregulation of MUC5AC expression and enhanced brain colonization. In summary, our study demonstrates that the MUC5AC/ANXA2 signaling axis promotes brain metastasis, suggesting a potential therapeutic paradigm for LUAD patients with high MUC5AC expression.


Subject(s)
Adenocarcinoma of Lung , Annexin A2 , Brain Neoplasms , Lung Neoplasms , Mucin 5AC , Signal Transduction , Humans , Mucin 5AC/metabolism , Mucin 5AC/genetics , Animals , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice , Annexin A2/metabolism , Annexin A2/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Female
13.
iScience ; 27(6): 110132, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38993482

ABSTRACT

Although up to 80% small cell lung cancer (SCLC) patients' response is good for first-line chemotherapy regimen, most patients develop recurrence of the disease within weeks to months. Here, we report cytostatic effect of leflunomide (Leflu) and teriflunomide (Teri) on SCLC cell proliferation through inhibition of DRP1 phosphorylation at Ser616 and decreased mitochondrial fragmentation. When administered together, Teri and carboplatin (Carbo) act synergistically to significantly inhibit cell proliferation and DRP1 phosphorylation, reduce abundance of intermediates in pyrimidine de novo pathway, and increase apoptosis and DNA damage. Combination of Leflu&Carbo has anti-tumorigenic effect in vivo. Additionally, lurbinectedin (Lur) and Teri potently and synergistically inhibited spheroid growth and depleted uridine and DRP1 phosphorylation in mouse tumors. Our results suggest combinations of Carbo and Lur with Teri or Leflu are efficacious and underscore how the relationship between DRP1/DHODH and mitochondrial plasticity serves as a potential therapeutic target to validate these treatment strategies in SCLC clinical trials.

14.
Adv Cancer Biol Metastasis ; 7: 100079, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36536947

ABSTRACT

Breast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients. Metastatic lesions in the brain originate when the cancer cells detach from a primary breast tumor and establish metastatic lesions and infiltrate near and distant organs via systemic blood circulation by traversing the BBB. The colonization of BC cells in the brain involves a complex interplay in the tumor microenvironment (TME), metastatic cells, and brain cells like endothelial cells, microglia, and astrocytes. BCBM is a significant cause of morbidity and mortality and presents a challenge to developing successful cancer therapy. In this review, we discuss the molecular mechanism of BCBM and novel therapeutic strategies for patients with brain metastatic BC.

15.
Oncogene ; 42(10): 759-770, 2023 03.
Article in English | MEDLINE | ID: mdl-36624189

ABSTRACT

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology. The Muc4 depletion in the autochthonous murine model carrying K-ras and p53 mutations (K-rasG12D; TP53R172H; Pdx-1cre, KPC) to generate the KPCM4-/- murine model showed a significant delay in the PanIN lesion formation with a significant reduction (p < 0.01) in EGFR (Y1068) and ERK1/2 (T202/Y204) phosphorylation. Further, a significant decrease (p < 0.01) in Sox9 expression in PanIN lesions of KPCM4-/- mice suggested the impairment of acinar-to-ductal metaplasia in Muc4-depleted cells. The biochemical analyses demonstrated that MUC4, through its juxtamembrane EGF-like domains, interacts with the EGFR ectodomain, and its cytoplasmic tail prevents EGFR ubiquitination and subsequent proteasomal degradation upon ligand stimulation, leading to sustained downstream oncogenic signaling. Targeting the MUC4 and EGFR interacting interface provides a promising strategy to improve the efficacy of EGFR-targeted therapies in PDAC and other MUC4-expressing malignancies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Phosphorylation , Disease Models, Animal , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Carcinogenesis , ErbB Receptors/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
16.
NPJ Precis Oncol ; 7(1): 74, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37567918

ABSTRACT

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.

17.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188783, 2022 09.
Article in English | MEDLINE | ID: mdl-36028149

ABSTRACT

Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.


Subject(s)
Immune Checkpoint Proteins , Neoplasms , B7 Antigens/genetics , Humans , Tumor Microenvironment
18.
Cytokine Growth Factor Rev ; 64: 71-83, 2022 04.
Article in English | MEDLINE | ID: mdl-34836750

ABSTRACT

Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor ß superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.


Subject(s)
Growth Differentiation Factor 15 , Neoplasms , Cachexia/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Humans , Neoplasms/metabolism , Obesity/complications , Obesity/metabolism , Tumor Microenvironment
19.
Bone Res ; 10(1): 6, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35058441

ABSTRACT

Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL