Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Publication year range
1.
Pharm Res ; 40(3): 661-674, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36829100

ABSTRACT

INTRODUCTION: A physiologically based pharmacokinetic (PBPK) model is developed that focuses on the kinetic parameters of drug association and dissociation with albumin, alpha-1 acid glycoprotein (AGP), and brain tissue proteins, as well as drug permeability at the blood-brain barrier, drug metabolism, and brain blood flow. GOAL: The model evaluates the extent to which plasma protein-mediated uptake (PMU) of drugs by brain influences the concentration of free drug both within the brain capillary compartment in vivo and the brain compartment. The model also studies the effect of drug binding to brain tissue proteins on the concentration of free drug in brain. METHODS: The steady state and non-steady state PBPK models are comprised of 11-12 variables, and 18-23 parameters, respectively. Two model drugs are analyzed: propranolol, which undergoes modest PMU from the AGP-bound pool, and imipramine, which undergoes a high degree of PMU from both the albumin-bound and AGP-bound pools in plasma. RESULTS: The free propranolol concentration in brain is under-estimated 2- to fourfold by in vitro measurements of free plasma propranolol, and the free imipramine concentration in brain is under-estimated by 18- to 31-fold by in vitro measurements of free imipramine in plasma. The free drug concentration in brain in vivo is independent of drug binding to brain tissue proteins. CONCLUSIONS: In vitro measurement of free drug concentration in plasma under-estimates the free drug in brain in vivo if PMU in vivo from either the albumin and/or the AGP pools in plasma takes place at the BBB surface.


Subject(s)
Imipramine , Propranolol , Propranolol/pharmacokinetics , Blood Proteins/metabolism , Brain/metabolism , Pharmaceutical Preparations , Albumins/metabolism , Protein Binding
2.
Mol Pharm ; 17(6): 2165-2174, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32315188

ABSTRACT

Trojan horse liposomes (THLs) are a form of ligand-targeted nanomedicine, where a plasmid DNA is encapsulated in the interior of a 100-150 nm pegylated liposome, and the tips of a fraction of the surface pegylated strands are covalently linked to a receptor-specific monoclonal antibody (MAb) via a thio-ether linkage. The goal of this work was to develop a lyophilization methodology that enables retention of the structure and function of the THLs following the freeze-drying/hydration process. THL fusion and leakage of plasmid DNA were observed with several lyoprotectants, including trehalose, hyaluronic acid, γ-cyclodextrin, or sulfobutylether-ß-cyclodextrin. However, the use of hydroxypropyl-γ-cyclodextrin, at a 40:1 wt/wt ratio relative to the THL phospholipid, eliminated liposome fusion and produced high retention of encapsulated plasmid DNA and THL-mediated gene expression after lyophilization followed by hydration. The freeze-dried THL cake was amorphous without cavitation, and the diameters and functional properties of the THLs were preserved following hydration of cakes stored for at least six months. Intravenous administration of the hydrated freeze-dried THLs in the Rhesus monkey demonstrated the safety of the formulation. Blood plasmid DNA was measured with a quantitative polymerase chain reaction method, which enabled a pharmacokinetics analysis of the blood clearance of the THL-encapsulated plasmid DNA in the primate. The work shows that optimization of the lyoprotectant enables long-term storage of the MAb-targeted DNA encapsulated liposomes in the freeze-dried state.


Subject(s)
Freeze Drying/methods , Liposomes/chemistry , Plasmids/genetics , Animals , Antibodies, Monoclonal , Humans , Macaca mulatta
3.
Mol Pharm ; 17(8): 2831-2839, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32579360

ABSTRACT

Erythropoietin (EPO), a hematopoietic growth factor and a promising therapy for Alzheimer's disease, has low permeability across the blood-brain barrier. The transferrin receptor antibody fused to EPO (TfRMAb-EPO) is a chimeric monoclonal antibody that ferries EPO into the brain via the transvascular route. However, TfRMAbs have Fc-effector function-related adverse effects including reticulocyte suppression. To overcome this, we recently developed an effectorless TfRMAb-EPO fusion protein, designated TfRMAb-N292G-EPO, by eliminating the Fc N-linked glycosylation site at position 292 of the antibody heavy chain. The mutant fusion protein showed enhanced plasma clearance and dramatically reduced plasma concentrations compared with the wild-type (WT) nonmutant fusion protein. This increased clearance of the aglycosylated TfRMAb is expected to increase the injection dose of the mutant fusion protein. To provide a basis for future therapeutic uses of this IgG-neurotrophin fusion protein, the current study aimed to characterize the pharmacokinetic profile of this effectorless TfRMAb-N292G-EPO at different doses following different routes of administration in the mouse. Adult C57BL/6J male mice were injected with a single dose (3, 6, 9, or 20 mg/kg; n = 3-6 per dose) of TfRMAb-N292G-EPO through either the subcutaneous (SQ) or intraperitoneal (IP) route. TfRMAb-N292G-EPO plasma concentrations were determined using an enzyme-linked immunosorbent assay. Mice were sacrificed 24 h after injection, and terminal blood was used for a complete blood count. Brain concentrations in the WT- and mutant fusion protein-treated mice were compared. We observed stark differences in the plasma pharmacokinetics of TfRMAb-N292G-EPO between the IP and SQ routes of administration. Dose escalation from 3 to 20 mg/kg increased the plasma Cmax only 3.5-fold for the SQ route, compared with a 35-fold increase for the IP route. The plasma Cmax was 15.0 ± 2.0, 21.3 ± 4.1, 21.3 ± 6.4, and 52.8 ± 27.9 ng/mL following SQ injection and 288 ± 47, 389 ± 154, 633 ± 194, and 10,066 ± 7059 ng/mL following IP injection for 3, 6, 9, and 20 mg/kg doses, respectively. The plasma Cmax following the SQ route was therefore 19- to 190-fold lower than that following the IP route. This finding is consistent with a 31-fold higher apparent clearance following the SQ route compared with the IP route at the highest dose administered. The brain concentrations in the mice treated with a 3 mg/kg dose of the mutant fusion protein were lower than those in the nonmutant WT-treated mice. No reticulocyte suppression was observed at the 3 mg/kg SQ dose of TfRMAb-N292G-EPO. However, reticulocyte suppression increased with an increase in dose and area under the plasma concentration-time curve (AUC) for both the IP and SQ routes. Overall, elimination of Fc N-linked glycosylation, to mitigate TfRMAb effector function side effects, has a profound effect on the plasma exposure of TfRMAb-N292G-EPO at therapeutic as well as high doses (3-20 mg/kg). This effect is more pronounced following SQ injection. The low plasma concentrations of the mutant fusion protein following a 3 mg/kg dose resulted in negligible brain uptake. The beneficial rescue of reticulocyte reduction by the N292G mutation is a function of AUC and is negated at high doses of the N292G mutant.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Erythropoietin/administration & dosage , Erythropoietin/metabolism , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Glycosylation , Immunoglobulin G/metabolism , Immunoglobulin Heavy Chains/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Permeability/drug effects
4.
Mol Pharm ; 16(8): 3534-3543, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31199881

ABSTRACT

Erythropoietin (EPO) is a potential therapeutic for Alzheimer's disease (AD); however, limited blood-brain barrier (BBB) penetration reduces its applicability as a CNS therapeutic. Antibodies against the BBB transferrin receptor (TfRMAbs) act as molecular Trojan horses for brain drug delivery, and a fusion protein of EPO and TfRMAb, designated TfRMAb-EPO, is protective in a mouse model of AD. TfRMAbs have Fc effector function side effects, and removal of the Fc N-linked glycosylation site by substituting Asn with Gly reduces the Fc effector function. However, the effect of such Fc mutations on the pharmacokinetics (PK) of plasma clearance of TfRMAb-based fusion proteins, such as TfRMAb-EPO, is unknown. To examine this, the plasma PK of TfRMAb-EPO (wild-type), which expresses the mouse IgG1 constant heavy chain region and includes the Asn residue at position 292, was compared to the mutant TfRMAb-N292G-EPO, in which the Asn residue at position 292 is mutated to Gly. Plasma PK was compared following IV, IP, and SQ administration for doses between 0.3 and 3 mg/kg in adult male C57 mice. The results show a profound increase in clearance (6- to 8-fold) of the TfRMAb-N292G-EPO compared with the wild-type TfRMAb-EPO following IV administration. The clearance of both the wild-type and mutant TfRMAb-EPO fusion proteins followed nonlinear PK, and a 10-fold increase in dose resulted in a 7- to 11-fold decrease in plasma clearance. Following IP and SQ administration, the Cmax values of the TfRMAb-N292G-EPO mutant were profoundly (37- to 114-fold) reduced compared with the wild-type TfRMAb-EPO, owing to comparable increases in plasma clearance of the mutant fusion protein. The wild-type TfRMAb fusion protein was associated with reticulocyte suppression, and the N292G mutation mitigated this suppression of reticulocytes. Overall, the beneficial suppression of effector function via the N292G mutation may be offset by the deleterious effect this mutation has on the plasma levels of the TfRMAb-EPO fusion protein, especially following SQ administration, which is the preferred route of administration in humans for chronic neurodegenerative diseases including AD.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Blood-Brain Barrier/metabolism , Erythropoietin/pharmacokinetics , Immunoconjugates/pharmacokinetics , Receptors, Transferrin/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacokinetics , Alzheimer Disease/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Cell Line , Endothelial Cells , Erythropoietin/administration & dosage , Erythropoietin/genetics , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/genetics , Immunoconjugates/immunology , Immunoglobulin Constant Regions/administration & dosage , Immunoglobulin Constant Regions/genetics , Immunoglobulin Constant Regions/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Injections, Intravenous , Injections, Subcutaneous , Male , Mice , Mutation , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Reticulocytes/drug effects
5.
Mol Pharm ; 15(2): 602-608, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29251941

ABSTRACT

Mucopolysaccharidosis Type IIIA (MPSIIIA), also known as Sanfilippo A syndrome, is an inherited neurodegenerative disease caused by mutations in the lysosomal enzyme, N-sulfoglucosamine sulfohydrolase (SGSH), also known as sulfamidase. Mutations in the SGSH enzyme, the only mammalian heparan N-sulfatase, cause accumulation of lysosomal inclusion bodies in brain cells comprising heparan sulfate (HS) glycosaminoglycans (GAGs). Treatment of MPSIIIA with intravenous recombinant SGSH is not possible because this large molecule does not cross the blood-brain barrier (BBB). BBB penetration by SGSH was enabled in the present study by re-engineering this enzyme as an IgG-SGSH fusion protein, where the IgG domain is a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated the cTfRMAb. The IgG domain of the fusion protein acts as a molecular Trojan horse to deliver the enzyme into brain via transport on the endogenous BBB TfR. The cTfRMAb-SGSH fusion protein bound to the mouse TfR with high affinity, ED50 = 0.74 ± 0.07 nM, and retained high SGSH enzyme activity, 10 043 ± 1003 units/mg protein, which is comparable to recombinant human SGSH. Male and female MPSIIIA mice, null for the SGSH enzyme, were treated for 6 weeks with thrice-weekly intraperitoneal injections of vehicle, 5 mg/kg of the cTfRMAb alone, or 5 mg/kg of the cTfRMAb-SGSH fusion protein, starting at the age of 2 weeks, and were euthanized 1 week after the last injection. Brain and liver HS, as determined by liquid chromatography-mass spectrometry, were elevated 30-fold and 36-fold, respectively, in the MPSIIIA mouse. Treatment of the mice with the cTfRMAb-SGSH fusion protein caused a 70% and 85% reduction in brain and liver HS, respectively. The reduction in brain HS was associated with a 28% increase in latency on the rotarod test of motor activity in male mice. The mice exhibited no injection related reactions, and only a low titer end of study antidrug antibody response was observed. In conclusion, substantial reductions in brain pathologic GAGs in a murine model of MPSIIIA are produced by chronic systemic administration of an IgG-SGSH fusion protein engineered to penetrate the BBB via receptor-mediated transport.


Subject(s)
Brain/drug effects , Heparitin Sulfate/analysis , Hydrolases/therapeutic use , Immunoglobulin G/therapeutic use , Mucopolysaccharidosis III/drug therapy , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Brain/blood supply , Brain/pathology , Disease Models, Animal , Female , Heparitin Sulfate/metabolism , Humans , Hydrolases/genetics , Hydrolases/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Knockout , Mucopolysaccharidosis III/pathology , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
6.
Mol Pharm ; 15(11): 5207-5216, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30226787

ABSTRACT

A monoclonal antibody (mAb) against the blood-brain barrier (BBB) transferrin receptor (TfR) is a potential agent for delivery of biologic drugs to the brain across the BBB. However, to date, no TfRMAb has been tested with chronic dosing in a primate model. A humanized TfRMAb against the human (h) TfR1, which cross reacts with the primate TfR, was genetically engineered with high affinity (ED50 = 0.18 ± 0.04 nM) for the human TfR type 1 (TfR1). For acute dosing, the hTfRMAb was tritiated and injected intravenously (IV) in the Rhesus monkey, which confirmed rapid delivery of the humanized hTfRMAb into both brain parenchyma, via transport across the BBB, and into cerebrospinal fluid (CSF), via transport across the choroid plexus. For chronic dosing, a total of 8 adult Rhesus monkeys (4 males, 4 females) were treated twice weekly for 4 weeks with 0, 3, 10, or 30 mg/kg of the humanized hTfRMAb via a 60 min IV infusion for a total of 8 doses prior to euthanasia and microscopic examination of brain and peripheral organs. A pharmacokinetics analysis showed the plasma clearance of the hTfRMAb in the primate was nonlinear, and plasma clearance was increased over 20-fold with chronic treatment of the low dose, 3 mg/kg, of the antibody. Chronic treatment of the primates with the 30 mg/kg dose caused anemia associated with suppressed blood reticulocytes. Immunohistochemistry of terminal brain tissue showed microglia activation, based on enhanced IBA1 immuno-staining, in conjunction with astrogliosis, based on increased GFAP immuno-staining. Moderate axonal/myelin degeneration was observed in the sciatic nerve. Further studies need to be conducted to determine if this neuropathology is induced by the antibody effector function, or is an intrinsic property of targeting the TfR in brain. The results indicate that chronic treatment of Rhesus monkeys with a humanized hTfRMAb may have a narrow therapeutic index, with associated toxicity related to microglial activation and astrogliosis of the brain.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Blood-Brain Barrier/metabolism , Drug Carriers/pharmacokinetics , Nervous System Diseases/chemically induced , Receptors, Transferrin/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/genetics , Antigens, CD/genetics , Axons/drug effects , Axons/pathology , Blood-Brain Barrier/pathology , Drug Carriers/administration & dosage , Female , Injections, Intravenous , Macaca mulatta , Male , Models, Animal , Myelin Sheath/drug effects , Myelin Sheath/pathology , Nervous System Diseases/pathology , Protein Engineering , Receptors, Transferrin/genetics , Toxicity Tests, Chronic
7.
Mol Pharm ; 15(11): 4963-4973, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30252487

ABSTRACT

Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has neuroprotective effects in rodent models of Alzheimer's disease (AD). However, high therapeutic doses or invasive routes of administration of EPO are required to achieve effective brain concentrations due to low blood-brain barrier (BBB) penetrability, and high EPO doses result in hematopoietic side effects. These obstacles can be overcome by engineering a BBB-penetrable analog of EPO, which is rapidly cleared from the blood, by fusing EPO to a chimeric monoclonal antibody targeting the transferrin receptor (cTfRMAb), which acts as a molecular Trojan horse to ferry the EPO into the brain via the transvascular route. In the current study, we investigated the effects of the BBB-penetrable analog of EPO on AD pathology in a double transgenic mouse model of AD. Five and a half month old male APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with saline ( n = 10) or the BBB-penetrable EPO ( n = 10) 3 days/week intraperitoneally for 8 weeks, compared to same-aged C57BL/6J wild-type mice treated with saline ( n = 8) with identical regiment. At 9 weeks following treatment initiation, exploration and spatial memory were assessed with the open-field and Y-maze test, mice were sacrificed, and brains were evaluated for Aß peptide load, synaptic loss, BBB disruption, microglial activation, and microhemorrhages. APP/PS1 mice treated with the BBB-penetrable cTfRMAb-EPO fusion protein had significantly lower cortical and hippocampal Aß peptide number ( p < 0.05) and immune-positive area ( p < 0.05), a decrease in hippocampal synaptic loss ( p < 0.05) and cortical microglial activation ( p < 0.001), and improved spatial memory ( p < 0.05) compared with APP/PS1 saline controls. BBB-penetrating EPO was not associated with microhemorrhage development. The cTfRMAb-EPO fusion protein offers therapeutic benefits by targeting multiple targets of AD pathogenesis and progression (Aß load, synaptic loss, microglial activation) and improving spatial memory in the APP/PS1 mouse model of AD.


Subject(s)
Alzheimer Disease/drug therapy , Erythropoietin/administration & dosage , Immunoconjugates/administration & dosage , Receptors, Transferrin/immunology , Recombinant Fusion Proteins/administration & dosage , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , CHO Cells , Cricetulus , Disease Models, Animal , Erythropoietin/genetics , Erythropoietin/pharmacokinetics , Humans , Immunoconjugates/genetics , Immunoconjugates/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Permeability , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Treatment Outcome
8.
Mol Pharm ; 14(4): 1271-1277, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28279069

ABSTRACT

Mucopolysaccharidosis type I (MPSI) is caused by mutations in the gene encoding the lysosomal enzyme, α-l-iduronidase (IDUA), and patients with MPSI are currently treated with IDUA enzyme replacement therapy (ERT). However, the majority of MPSI patients have severe CNS involvement, and conventional ERT does not treat the brain. The failure of ERT to treat the brain is believed to be due to the lack of IDUA transport through the blood-brain barrier (BBB). However, BBB transport of IDUA has not been directly measured, to date. BBB transport of IDUA may be enhanced by fusion of the enzyme to a monoclonal antibody (mAb) against the human insulin receptor (HIR). The HIRMAb binds the insulin receptor on the BBB to trigger transport into the brain and acts as a molecular Trojan horse to deliver IDUA to brain cells. Therefore, the purpose of the present investigation was to compare, side-by-side, the BBB transport of IDUA alone and the HIRMAb-IDUA fusion protein in the Rhesus monkey in vivo. Each protein was radio-iodinated by conjugation with the [125I]-Bolton-Hunter reagent and injected intravenously (IV) in the primate. The uptake by brain, and peripheral organs, was measured by whole body autoradiography. The results show there is no transport of IDUA alone into the brain, but that the brain uptake of the HIRMAb-IDUA fusion protein is high, 1.2% injected dose/brain. There is comparable uptake of the IDUA and the HIRMAb-IDUA fusion protein by peripheral organs, where uptake is primarily controlled by the mannose 6-phosphate receptor. The work suggests that treatment of MPSI with the HIRMAb-IDUA fusion protein will be as effective as IDUA in peripheral organs, but offer the benefit of treatment of the central nervous system in MPSI.


Subject(s)
Antibodies, Monoclonal/metabolism , Antigens, CD/metabolism , Brain/metabolism , Iduronidase/metabolism , Receptor, Insulin/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Blood-Brain Barrier/metabolism , Humans , Macaca mulatta , Mucopolysaccharidosis I/metabolism , Receptor, IGF Type 2/metabolism , Succinimides/metabolism
9.
Mol Pharm ; 14(7): 2340-2349, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28514851

ABSTRACT

Tumor necrosis factor alpha (TNF-α) driven processes are involved at multiple stages of Alzheimer's disease (AD) pathophysiology and disease progression. Biologic TNF-α inhibitors (TNFIs) are the most potent class of TNFIs but cannot be developed for AD since these macromolecules do not cross the blood-brain barrier (BBB). A BBB-penetrating TNFI was engineered by the fusion of the extracellular domain of the type II human TNF receptor (TNFR) to a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated as the cTfRMAb-TNFR fusion protein. The cTfRMAb domain functions as a molecular Trojan horse, binding to the mouse TfR and ferrying the biologic TNFI across the BBB via receptor-mediated transcytosis. The aim of the study was to examine the effect of this BBB-penetrating biologic TNFI in a mouse model of AD. Six-month-old APPswe, PSEN 1dE9 (APP/PS1) transgenic mice were treated with saline (n = 13), the cTfRMAb-TNFR fusion protein (n = 12), or etanercept (non-BBB-penetrating biologic TNFI; n = 11) 3 days per week intraperitoneally. After 12 weeks of treatment, recognition memory was assessed using the novel object recognition task, mice were sacrificed, and brains were assessed for amyloid beta (Aß) load, neuroinflammation, BBB damage, and cerebral microhemorrhages. The cTfRMAb-TNFR fusion protein caused a significant reduction in brain Aß burden (both Aß peptide and plaque), neuroinflammatory marker ICAM-1, and a BBB disruption marker, parenchymal IgG, and improved recognition memory in the APP/PS1 mice. Fusion protein treatment resulted in low antidrug-antibody formation with no signs of either immune reaction or cerebral microhemorrhage development with chronic 12-week treatment. Chronic treatment with the cTfRMAb-TNFR fusion protein, a BBB-penetrating biologic TNFI, offers therapeutic benefits by targeting Aß pathology, neuroinflammation, and BBB-disruption, overall improving recognition memory in a transgenic mouse model of AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Antibodies, Monoclonal/therapeutic use , Blood-Brain Barrier/metabolism , Receptors, Transferrin/antagonists & inhibitors , Recombinant Fusion Proteins/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cryoultramicrotomy , Enzyme-Linked Immunosorbent Assay , Humans , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence
10.
Mol Pharm ; 13(9): 3241-6, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27513815

ABSTRACT

Brain penetration of recombinant protein drugs is possible following the re-engineering of the drug as an IgG fusion protein. The IgG domain is a monoclonal antibody (mAb) against an endogenous blood-brain barrier (BBB) receptor transporter, such as the insulin receptor. One such mAb targets the human insulin receptor (HIR) and is active in Rhesus monkeys. Prior work has measured the plasma pharmacokinetics of HIRMAb-derived fusion proteins following intravenous (IV) infusion. However, an alternative method of administration for chronic treatment of brain disease is the subcutaneous (SQ) route. The extent to which an antibody against the insulin receptor undergoes systemic distribution and clearance is unknown. Therefore, in the present study, the rate of plasma clearance of the HIRMAb is measured in Rhesus monkeys following IV or SQ administration of 3, 10, and 30 mg/kg doses of the antibody. The HIRMAb is readily absorbed into the systemic circulation following SQ injection with a 42% plasma bioavailability. The rate of plasma clearance of the antibody, 0.04-0.06 mL/min/kg, is the same following either IV or SQ administration. Owing to the slow rate of plasma clearance of the antibody, high concentrations of the HIRMAb are sustained in plasma for days after the SQ injection. The plasma concentration of the HIRMAb exceeds 0.8 mg/mL, which is 9% of the entire plasma IgG pool in the primate, after the SQ injection of the high dose, 30 mg/kg, of the antibody. In summary, the pharmacokinetics of plasma clearance of the HIRMAb are such that HIRMAb-derived fusion proteins can be developed as protein therapeutics for the brain with chronic SQ administration on a weekly or twice-weekly regimen.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Animals , Blood-Brain Barrier/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/metabolism , Macaca mulatta , Male , Recombinant Fusion Proteins/metabolism
11.
Mol Pharm ; 13(4): 1385-92, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26910785

ABSTRACT

Mucopolysaccharidosis Type IIIB (MPSIIIB) is caused by mutations in the gene encoding the lysosomal enzyme, α-N-acetylglucosaminidase (NAGLU). MPSIIIB presents with severe disease of the central nervous system, but intravenous NAGLU enzyme replacement therapy has not been developed because the NAGLU enzyme does not cross the blood-brain barrier (BBB). A BBB-penetrating form of the enzyme was produced by re-engineering NAGLU as an IgG-enzyme fusion protein, where the IgG domain is a monoclonal antibody (mAb) against the human insulin receptor (HIR). The HIRMAb traverses the BBB via transport on the endogenous insulin receptor and acts as a molecular Trojan horse to ferry the fused NAGLU across the BBB from blood. The NAGLU was fused to the carboxyl terminus of each heavy chain of the HIRMAb via an extended 31-amino acid linker, and the fusion protein is designated HIRMAb-LL-NAGLU. The fusion protein retains high affinity binding to the HIR, and on a molar basis has an enzyme activity equal to that of recombinant human NAGLU. Treatment of MPSIIIB fibroblasts with the fusion protein normalizes intracellular NAGLU enzyme activity and reduces sulfate incorporation into intracellular glycosoaminoglycan. The fusion protein is targeted to the lysosomal compartment of the cells as shown by confocal microscopy. The fusion protein was radiolabeled with the [(125)I]-Bolton-Hunter reagent and injected intravenously in the adult Rhesus monkey. The fusion protein was rapidly cleared from plasma by all major peripheral organs. The high brain uptake of the fusion protein, 1% injected dose/brain, enables normalization of brain NAGLU enzyme activity with a therapeutic dose of 1 mg/kg. The HIRMAb-LL-NAGLU fusion protein is a new treatment of the brain in MPSIIIB, which can be administered by noninvasive intravenous infusion.


Subject(s)
Acetylglucosaminidase/metabolism , Antibodies, Monoclonal/metabolism , Blood-Brain Barrier/metabolism , Fibroblasts/metabolism , Glycosaminoglycans/metabolism , Receptor, Insulin/immunology , Recombinant Fusion Proteins/metabolism , Acetylglucosaminidase/genetics , Animals , Antibodies, Monoclonal/genetics , Biological Transport/physiology , Humans , Macaca mulatta , Recombinant Fusion Proteins/genetics
13.
Biotechnol Bioeng ; 111(11): 2317-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24889100

ABSTRACT

Mucopolysaccharidosis (MPS) Type II is caused by mutations in the gene encoding the lysosomal enzyme, iduronate 2-sulfatase (IDS). The majority of MPSII cases affect the brain. However, enzyme replacement therapy with recombinant IDS does not treat the brain, because IDS is a large molecule drug that does not cross the blood-brain barrier (BBB). To enable BBB penetration, IDS has been re-engineered as an IgG-IDS fusion protein, where the IgG domain is a monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and the HIRMAb domain of the fusion protein acts as a molecular Trojan horse to ferry the fused IDS into brain from blood. The present study reports on the first safety pharmacology and pharmacokinetics study of the HIRMAb-IDS fusion protein. Juvenile male Rhesus monkeys were infused intravenously (IV) weekly for 26 weeks with 0, 3, 10, or 30 mg/kg of the HIRMAb-IDS fusion protein. The plasma clearance of the fusion protein followed a linear pharmacokinetics profile, which was equivalent either with measurements of the plasma concentration of immunoreactive HIRMAb-IDS fusion protein, or with assays of plasma IDS enzyme activity. Anti-drug antibody (ADA) titers were monitored monthly, and the ADA response was primarily directed against the variable region of the HIRMAb domain of the fusion protein. No infusion related reactions or clinical signs of immune response were observed during the course of the study. A battery of safety pharmacology, clinical chemistry, and tissue histopathology showed no signs of adverse events, and demonstrate the safety profile of chronic treatment of primates with 3-30 mg/kg weekly IV infusion doses of the HIRMAb-IDS fusion protein.


Subject(s)
Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antigens, CD/immunology , Glycoproteins/adverse effects , Glycoproteins/pharmacokinetics , Receptor, Insulin/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Glycoproteins/administration & dosage , Glycoproteins/genetics , Infusions, Intravenous , Macaca mulatta , Metabolic Clearance Rate , Plasma/chemistry , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics
14.
Mol Pharm ; 11(8): 2928-34, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24949884

ABSTRACT

Mutations in the lysosomal enzyme, N-sulfoglucosamine sulfohydrolase (SGSH), also called sulfamidase, cause accumulation of lysosomal inclusion bodies in the brain of children born with mucopolysaccharidosis type IIIA, also called Sanfilippo type A syndrome. Enzyme replacement therapy with recombinant SGSH does not treat the brain because the enzyme is a large molecule drug that does not cross the blood-brain barrier (BBB). A BBB-penetrating form of SGSH was produced by re-engineering the enzyme as an IgG fusion protein, where the IgG domain is a monoclonal antibody (mAb) against the human insulin receptor (HIR). The HIRMAb domain of the HIRMAb-SGSH fusion protein acts as a molecular Trojan horse to ferry the fused enzyme across the BBB. The HIRMAb-SGSH was produced in stably transfected host cells and purified to homogeneity by protein A chromatography. The fusion protein reacted with antibodies against either human IgG or SGSH on Western blotting. High affinity binding to the HIR was retained following SGSH fusion to the HIRMAb, with an EC50 of 0.33 ± 0.05 nM in an HIR binding ELISA. The SGSH enzyme activity of the HIRMAb-SGSH fusion protein was 4712 ± 388 units/mg protein based on a two-step fluorometric enzyme assay. The HIRMAb-SGSH was taken up by lysosomes in MPSIIIA fibroblasts, and treatment of these cells with the fusion protein caused an 83% reduction in sulfate incorporation into lysosomal glycosoaminoglycans. The HIRMAb-SGSH fusion protein was radiolabeled with the [(125)I]-Bolton-Hunter reagent and injected intravenously in the Rhesus monkey. The brain uptake of the fusion protein was high, ∼1% injected dose/brain. Calculations, based on this level of brain uptake, suggest normalization of brain SGSH enzyme activity is possible following administration of therapeutic doses of the fusion protein. These studies describe a novel IgG-SGSH fusion protein that is a new noninvasive treatment of the brain in MPS type IIIA.


Subject(s)
Antibodies, Monoclonal/chemistry , Glycosaminoglycans/chemistry , Hydrolases/chemistry , Mucopolysaccharidosis III/drug therapy , Receptor, Insulin/chemistry , Animals , Blood-Brain Barrier/drug effects , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Enzyme Replacement Therapy/methods , Fibroblasts/metabolism , Hydrolases/genetics , Immunoglobulin G/chemistry , Lysosomes/chemistry , Macaca mulatta , Male , Microscopy, Confocal , Mucopolysaccharidosis III/metabolism , Mutation , Permeability , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry
15.
Bioconjug Chem ; 24(10): 1741-9, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24059813

ABSTRACT

Recombinant proteins are large molecule drugs that do not cross the blood-brain barrier (BBB). However, BBB-penetration of protein therapeutics is enabled by re-engineering the recombinant protein as IgG fusion proteins. The IgG domain is a monoclonal antibody (mAb) against an endogenous BBB receptor-mediated transport system, such as the human insulin receptor (HIR), and acts as a molecular Trojan horse to ferry the fused protein across the BBB. In the present study, a recombinant lysosomal enzyme, iduronate 2-sulfatase (IDS), is fused to the HIRMAb, and BBB penetration of the IDS alone vs the HIRMAb-IDS fusion protein is compared in the Rhesus monkey. Recombinant IDS and the HIRMAb-IDS fusion protein were radiolabeled with indirect iodination with the [(125)I]-Bolton-Hunter reagent and with direct iodination with Iodogen/[(125)I]-idodine. IDS and the HIRMAb-IDS fusion protein have comparable plasma pharmacokinetics and uptake by peripheral organs. IDS does not cross the BBB. The HIRMAb-IDS fusion protein crosses the BBB and the brain uptake is 1% of injected dose/brain. Brain imaging shows HIRMAb-IDS penetration to all parts of brain, and immunoprecipitation of brain radioactivity shows intact fusion protein in brain. The use of BBB molecular Trojan horses enables brain imaging of recombinant proteins that are re-engineered for BBB transport.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Blood-Brain Barrier/metabolism , Iduronate Sulfatase/pharmacokinetics , Recombinant Fusion Proteins/pharmacokinetics , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Horses , Humans , Iduronate Sulfatase/analysis , Iodine Radioisotopes/analysis , Macaca mulatta , Radiography , Receptor, Insulin/immunology , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/immunology , Succinimides/analysis
16.
Bioconjug Chem ; 24(1): 97-104, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23249376

ABSTRACT

The chronic administration of recombinant fusion proteins in preclinical animal models may generate an immune response and the formation of antidrug antibodies (ADA). Such ADAs could alter the plasma pharmacokinetics of the fusion protein, and mask any underlying toxicity of the recombinant fusion protein. In the present study, a model IgG-enzyme fusion protein was evaluated with chronic dosing of rhesus monkeys. The IgG domain of the fusion protein is a genetically engineered monoclonal antibody (mAb) against the human insulin receptor (HIR), which is shown to cross-react with the primate insulin receptor. The enzyme domain of the fusion protein is human iduronidase (IDUA), the lysosomal enzyme mutated in Mucopolysaccharidosis Type I (MPSI). MPSI affects the brain, but enzyme replacement therapy is not effective for the brain, because IDUA does not cross the blood-brain barrier (BBB). The HIRMAb domain of the fusion protein acts as a molecular Trojan horse to deliver the IDUA across the BBB. The HIRMAb-IDUA fusion protein was administered to rhesus monkeys with weekly intravenous infusions of 3-30 mg/kg for 6 months, and the pharmacokinetics, immune response, and tissue toxicology were assessed. The pharmacokinetics of plasma clearance of the fusion protein was determined with measurements of plasma IDUA enzyme activity. ADAs formed during the course of the 6 months of treatment, as determined by a sandwich ELISA. However, the plasma clearance of the fusion protein at the start and end of the 6-month study was comparable at all drug doses. Fusion protein administration for 6 months showed no evidence of chronic tissue toxicity. These studies demonstrate that the immune response produced with chronic treatment of primates with an IgG-enzyme fusion protein has no effect on the pharmacokinetics of plasma clearance of the fusion protein.


Subject(s)
Antibody Formation , Iduronidase/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Receptor, Insulin/immunology , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/toxicity , Humans , Iduronidase/administration & dosage , Iduronidase/pharmacokinetics , Iduronidase/toxicity , Immunoglobulin G/administration & dosage , Immunoglobulin G/toxicity , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/toxicity
17.
Biotechnol Bioeng ; 110(5): 1456-65, 2013 May.
Article in English | MEDLINE | ID: mdl-23192358

ABSTRACT

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [(125) I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antigens, CD/metabolism , Brain/metabolism , Cerebroside-Sulfatase/pharmacokinetics , Drug Delivery Systems/methods , Receptor, Insulin/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Blood-Brain Barrier/metabolism , Brain Chemistry , CHO Cells , Cerebroside-Sulfatase/chemistry , Cerebroside-Sulfatase/genetics , Cricetinae , Cricetulus , Humans , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , Leukodystrophy, Metachromatic , Macaca mulatta , Male , Protein Binding , Protein Engineering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Tissue Distribution
18.
Mol Pharm ; 10(9): 3507-13, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23924247

ABSTRACT

Anti-amyloid antibodies (AAA) are under development as new therapeutics that disaggregate the amyloid plaque in brain in Alzheimer's disease (AD). However, the AAAs are large molecule drugs that do not cross the blood-brain barrier (BBB), in the absence of BBB disruption. In the present study, an AAA was re-engineered for receptor-mediated transport across the BBB via the endogenous BBB transferrin receptor (TfR). A single chain Fv (ScFv) antibody form of an AAA was fused to the carboxyl terminus of each heavy chain of a chimeric monoclonal antibody (mAb) against the mouse TfR, and this produced a tetravalent bispecific antibody designated the cTfRMAb-ScFv fusion protein. Unlike a conventional AAA, which has a plasma half-time of weeks, the cTfRMAb-ScFv fusion protein is cleared from plasma in mice with a mean residence time of about 3 h. Therefore, a novel protocol was developed for the treatment of one year old presenilin (PS)-1/amyloid precursor protein (APP) AD double transgenic PSAPP mice, which were administered daily subcutaneous (sc) injections of 5 mg/kg of the cTfRMAb-ScFv fusion protein for 12 consecutive weeks. At the end of the treatment, brain amyloid plaques were quantified with confocal microscopy using both Thioflavin-S staining and immunostaining with the 6E10 antibody against Abeta amyloid fibrils. Fusion protein treatment caused a 57% and 61% reduction in amyloid plaque in the cortex and hippocampus, respectively. No increase in plasma immunoreactive Abeta amyloid peptide, and no cerebral microhemorrhage, was observed. Chronic daily sc treatment of the mice with the fusion protein caused no immune reactions and only a low titer antidrug antibody response. In conclusion, re-engineering AAAs for receptor-mediated BBB transport allows for reduction in brain amyloid plaque without cerebral microhemorrhage following daily sc treatment for 12 weeks.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/immunology , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/therapeutic use , Brain/metabolism , Plaque, Amyloid/metabolism , Receptors, Transferrin/immunology , Animals , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Mice , Mice, Transgenic
19.
Mol Pharm ; 10(4): 1425-31, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23410508

ABSTRACT

Tumor necrosis factor (TNF)-α is a proinflammatory cytokine active in the brain. Etanercept, the TNF decoy receptor (TNFR), does not cross the blood-brain barrier (BBB). The TNFR was re-engineered for BBB penetration as a fusion protein with a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse and mediates transport via the endogenous BBB TfR. To support future chronic treatment of mouse models of neural disease with daily administration of the cTfRMAb-TNFR fusion protein, a series of pharmacokinetics and brain uptake studies in the mouse was performed. The cTfRMAb-TNFR fusion protein was radiolabeled and injected into mice via the intravenous, intraperitoneal (IP), or subcutaneous (SQ) routes of administration at doses ranging from 0.35 to 10 mg/kg. The distribution of the fusion protein into plasma following the IP or SQ routes was enhanced by increasing the injection dose from 3 to 10 mg/kg. The fusion protein demonstrated long circulation times with high metabolic stability following the IP or SQ routes of injection. The IP or SQ routes produced concentrations of the cTfRMAb-TNFR fusion protein in the brain that exceed by 20- to 50-fold the concentration of TNFα in pathologic conditions of the brain. The SQ injection is the preferred route of administration, as the level of cTfRMAb fusion protein produced in the brain is comparable to that generated with intravenous injection, and at a much lower plasma area under the concentration curve of the fusion protein as compared to IP administration.


Subject(s)
Brain/drug effects , Brain/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/chemistry , Receptors, Tumor Necrosis Factor/administration & dosage , Receptors, Tumor Necrosis Factor/chemistry , Animals , Antibodies, Monoclonal/chemistry , Area Under Curve , Blood-Brain Barrier , Drug Design , Etanercept , Inflammation , Infusions, Intravenous , Infusions, Parenteral , Infusions, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Receptors, Transferrin/chemistry , Recombinant Fusion Proteins/metabolism
20.
Article in English | MEDLINE | ID: mdl-37583474

ABSTRACT

Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.

SELECTION OF CITATIONS
SEARCH DETAIL