Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Am J Cardiol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723857

ABSTRACT

Aortic stenosis is a common and significant valve condition requiring bioprosthetic heart valves with transcatheter aortic valve replacement (TAVR) being strongly recommended for high-risk patients or patients over 75 years. This meta-analysis aimed to pool existing data on postprocedural clinical as well as echocardiographic outcomes comparing valve-in-valve (ViV)-TAVR to redo-surgical aortic valve replacement to assess the short-term and medium-term outcomes for both treatment methods. A systematic literature search on Cochrane Central, Scopus, and Medline (PubMed interface) electronic databases from inception to August 2023. We used odds ratios (OR) for dichotomous outcomes and mean differences (MD) for continuous outcomes. Twenty-four studies (25,216 patients) were pooled with a mean follow-up of 16.4 months. The analysis revealed that ViV-TAVR group showed a significant reduction in 30-day mortality (OR 0.50, 95% confidence interval [CI] 0.43 to 0.58, p <0.00001), new-onset atrial fibrillation (OR 0.34, 95% CI 0.17 to 0.67, p = 0.002), major bleeding event (OR 0.28, 95% CI 0.17 to 0.45, p <0.00001) and lower rate of device success (OR 0.25, 95% CI 0.12 to 0.53, p = 0.0003). There were no significant differences between either group when assessing 1-year mortality, stroke, myocardial infarction, postoperative left ventricular ejection fraction, and effective orifice area. ViV-TAVR cohort showed a significantly increased incidence of paravalvular leaks, aortic regurgitation, and increased mean aortic valve gradient. ViV-TAVR is a viable short-term option for elderly patients with high co-morbidities and operative risks, reducing perioperative complications and improving 30-day mortality with no significant cardiovascular adverse events. However, both treatment methods present similar results on short-term to medium-term complications assessment.

3.
J Infect Dis ; 206(6): 915-23, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22807524

ABSTRACT

BACKGROUND: Staphylococcus aureus has numerous virulence factors, including exotoxins that may increase the severity of infection. This study was aimed at assessing whether preexisting antibodies to S. aureus toxins are associated with a lower risk of sepsis in adults with S. aureus infection complicated by bacteremia. METHODS: We prospectively identified adults with S. aureus infection from 4 hospitals in Baltimore, MD, in 2009­2011. We obtained serum samples from prior to or at presentation of S. aureus bacteremia to measure total immunoglobulin G (IgG) and IgG antibody levels to 11 S. aureus exotoxins. Bacterial isolates were tested for the genes encoding S. aureus exotoxins using polymerase chain reaction (PCR). RESULTS: One hundred eligible subjects were included and 27 of them developed sepsis. When adjusted for total IgG levels and stratified for the presence of toxin in the infecting isolate as appropriate, the risk of sepsis was significantly lower in those patients with higher levels of IgG against α-hemolysin (Hla), δ-hemolysin (Hld), Panton Valentine leukocidin (PVL), staphylococcal enterotoxin C-1 (SEC-1), and phenol-soluble modulin α3 (PSM-α3). CONCLUSIONS: Our results suggest that higher antibody levels against Hla, Hld, PVL, SEC-1, and PSM-α3 may protect against sepsis in patients with invasive S. aureus infections.


Subject(s)
Antibodies, Bacterial/blood , Exotoxins/immunology , Sepsis/microbiology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Adult , Aged , Bacterial Proteins/immunology , Cohort Studies , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , Odds Ratio , Risk Factors , Sepsis/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
4.
Health Secur ; 20(2): 154-163, 2022.
Article in English | MEDLINE | ID: mdl-35467945

ABSTRACT

We conducted a comprehensive, multiphase laboratory evaluation of InBios Active Melioidosis Detect (AMD) rapid test, a lateral flow immunoassay designed to detect capsular polysaccharides produced by Burkholderia mallei or Burkholderia pseudomallei, used in conjunction with the Omni Array Reader (OAR) for the rapid detection of B mallei or B pseudomallei in environmental (nonclinical) samples at 2 sites. The limit of detection, using reference strains B mallei strain ATCC 23344 and B pseudomallei strain ATCC 11668, was determined to be 103 to 104 CFU/mL. In different phases of the evaluation, inclusivity strains that included geographically diverse strains of B mallei (N = 13) and B pseudomallei (N = 22), geographically diverse phylogenetic near neighbor strains (N = 66), environmental background strains (N = 64), white powder samples (N = 26), and environmental filter extracts (N = 1 pooled sample from 10 filter extracts) were also tested. A total of 1,753 tests were performed, which included positive and negative controls. Visual and OAR results showed that the AMD test detected 92.3% of B mallei and 95.5% of B pseudomallei strains. Of the 66 near-neighbor strains tested, cross-reactivity was observed with only B stabilis 2008724195 and B thailandensis 2003015869. Overall, the specificity and sensitivity were 98.8% and 98.7%, respectively. The results of this evaluation support the use of the AMD test as a rapid, qualitative assay for the presumptive detection of B mallei and B pseudomallei in suspicious environmental samples such as white powders and aerosol samples by first responders and laboratory personnel.


Subject(s)
Burkholderia mallei , Burkholderia pseudomallei , Melioidosis , Humans , Melioidosis/diagnosis , Phylogeny , Plant Extracts
5.
Health Secur ; 20(2): 164-171, 2022.
Article in English | MEDLINE | ID: mdl-35467946

ABSTRACT

We conducted a comprehensive, multiphase laboratory evaluation of the InBios Active Melioidosis Detect (AMD) rapid test, a lateral flow immunoassay designed to detect capsular polysaccharides produced by Burkholderia mallei or Burkholderia pseudomallei, used in conjunction with the Omni Array Reader for the rapid identification of culture isolates of B mallei or B pseudomallei to support clinical diagnosis for response and triage during a mass casualty event, such as a biological attack. The study was conducted at 2 sites to assess the performance of the AMD test. The sensitivity, specificity, and reproducibility of the assay was determined using 5 replicates of 35 inclusivity strains and 64 clinical background strains. A total of 520 tests were performed, which included both positive and negative controls. Results obtained visually and with the Omni Array Reader showed a sensitivity of 92.3% for B mallei and 95.6% for B pseudomallei; no cross-reactivity was observed with any of the 64 clinical background organisms. The results from this study indicate that the AMD test for the presumptive identification of B mallei and B pseudomallei isolates to support clinical diagnosis is highly robust, specific, and sensitive. This evaluation supports the use of this test as a rapid, qualitative assay for the presumptive identification of B mallei and B pseudomallei in a clinical setting.


Subject(s)
Burkholderia mallei , Burkholderia pseudomallei , Melioidosis , Humans , Melioidosis/diagnosis , Reproducibility of Results
6.
Health Secur ; 18(2): 83-95, 2020.
Article in English | MEDLINE | ID: mdl-32324068

ABSTRACT

We conducted a comprehensive, multi-phase laboratory evaluation of the Tularemia BioThreat Alert® (BTA) test, a lateral flow assay (LFA) for the rapid detection of Francisella tularensis. The study, conducted at 2 sites, evaluated the limit of detection (LOD) of this assay using the virulent SchuS4 strain and the avirulent LVS strain of F. tularensis. In 6-phase evaluation (linear dynamic range and reproducibility, inclusivity, near-neighbor, environmental background, white powder, and environmental filter extract), 13 diverse strains of F. tularensis, 8 Francisella near neighbors, 61 environmental background organisms, 26 white powders, and a pooled aerosol extract were tested. In the 937 tests performed, the Tularemia BTA demonstrated an LOD of 107 to 108 cfu/mL, with a sensitivity of 100.00%, specificity of 98.08%, and accuracy of 98.84%. These performance data are important for accurate interpretation of qualitative results arising from screening suspicious white powders in the field.


Subject(s)
Aerosols/analysis , Biological Assay/methods , Francisella tularensis/isolation & purification , Powders/analysis , Bioterrorism , Reproducibility of Results , Sensitivity and Specificity
7.
Health Secur ; 17(6): 439-453, 2019.
Article in English | MEDLINE | ID: mdl-31859568

ABSTRACT

We conducted a comprehensive, multiphase laboratory evaluation of the Plague BioThreat Alert® (BTA) test, a lateral flow immunoassay (LFA), for the rapid detection of Yersinia pestis. The study was conducted in 7 phases at 2 sites to assess the performance of the LFA. The limit of detection (LOD) was determined using both a virulent and avirulent strain of Y. pestis, CO99-3015 (105 CFU/ml) and A1122 (104 CFU/ml), respectively. In the other phases, 18 Y. pestis strains, 20 phylogenetic near-neighbor strains, 61 environmental background microorganisms, 26 white powders, and a pooled aerosol sample were also tested. A total of 1,110 LFA test results were obtained, and their analysis indicates that this LFA had a sensitivity of 97.65% and specificity of 96.57%. These performance data are important for accurate interpretation of qualitative results arising from testing suspicious white powders and aerosol samples in the field. Any positive specimen in this assay is considered presumptive positive and should be referred to the Centers for Disease Control and Prevention Laboratory Response Network for additional testing, confirmation, and characterization for an appropriate public health response.


Subject(s)
Bioterrorism/prevention & control , Immunoassay/methods , Plague/prevention & control , Yersinia pestis/isolation & purification , Humans , Sensitivity and Specificity
8.
Health Secur ; 17(4): 334-343, 2019.
Article in English | MEDLINE | ID: mdl-31433282

ABSTRACT

A comprehensive laboratory evaluation of the Tetracore RedLine Alert test, a lateral flow immunoassay (LFA) for the rapid presumptive identification of Bacillus anthracis, was conducted at 2 different test sites. The study evaluated the sensitivity of this assay using 16 diverse strains of B. anthracis grown on sheep blood agar (SBA) plates. In addition, 83 clinically relevant microorganisms were tested to assess the specificity of the RedLine Alert test. The results indicated that the RedLine Alert test for the presumptive identification of B. anthracis is highly robust, specific, and sensitive. RedLine Alert is a rapid test that has applicability for use in a clinical setting for ruling-in or ruling-out nonhemolytic colonies of Bacillus spp. grown on SBA medium as presumptive isolates of B. anthracis.


Subject(s)
Anthrax , Bacillus anthracis/isolation & purification , Diagnostic Tests, Routine , Immunoassay , Animals , Anthrax/diagnosis , Anthrax/microbiology , Humans , Sensitivity and Specificity , Sheep
9.
Health Secur ; 14(5): 351-65, 2016.
Article in English | MEDLINE | ID: mdl-27661796

ABSTRACT

We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.


Subject(s)
Bacillus anthracis/isolation & purification , Bioterrorism/prevention & control , Immunoassay/methods , Spores, Bacterial/isolation & purification , Civil Defense/methods , Immunoassay/instrumentation , Powders , Reagent Strips , Reproducibility of Results , Sensitivity and Specificity
10.
PLoS One ; 8(6): e65384, 2013.
Article in English | MEDLINE | ID: mdl-23762356

ABSTRACT

Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL), gamma hemolysins (Hlg), and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.


Subject(s)
Bacteremia/immunology , Bacteremia/prevention & control , Bacterial Proteins/immunology , Leukocidins/immunology , Staphylococcus aureus/immunology , Vaccines, Attenuated/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/pharmacology , Amino Acids , Animals , Antibodies, Neutralizing/pharmacology , Bacteremia/microbiology , Bacterial Load/drug effects , Bacterial Proteins/chemistry , Bacterial Toxins/immunology , Cross Reactions/drug effects , Disease Models, Animal , Drug Design , Exotoxins/immunology , Immunization , Leukocidins/chemistry , Mice , Mice, Inbred BALB C , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Multimerization/drug effects , Protein Stability/drug effects , Protein Unfolding/drug effects , Sequence Homology, Amino Acid , Staphylococcus aureus/drug effects , Temperature , Vaccines, Attenuated/chemistry , Vaccines, Subunit/chemistry
11.
PLoS One ; 7(6): e38567, 2012.
Article in English | MEDLINE | ID: mdl-22701668

ABSTRACT

Staphylococcus aureus (S. aureus) is a human pathogen associated with skin and soft tissue infections (SSTI) and life threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla) is a pore-forming toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S. aureus strain Newman and the pandemic strain USA300 (LAC). Significant protection from lethal bacteremia/sepsis and pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE) that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG) protected mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel immunotherapy for S. aureus infection.


Subject(s)
Bacteremia/prevention & control , Bacterial Toxins/immunology , Hemolysin Proteins/immunology , Models, Molecular , Pneumonia/prevention & control , Staphylococcal Vaccines , Staphylococcus aureus/immunology , Vaccines, Synthetic , Animals , Bacteremia/immunology , Bacterial Toxins/chemistry , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay , Female , Hemolysin Proteins/chemistry , Immunoglobulin G/immunology , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Neutralization Tests , Plasmids/genetics , Pneumonia/immunology , Rabbits
12.
Appl Environ Microbiol ; 69(10): 6272-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14532091

ABSTRACT

The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.


Subject(s)
Molecular Mimicry , Peptides/chemistry , Pertussis Toxin/chemistry , Pertussis Toxin/isolation & purification , alpha-Fetoproteins/chemistry , Amino Acid Sequence , Animals , Antibodies, Bacterial/immunology , Binding Sites , Bordetella pertussis/immunology , Bordetella pertussis/metabolism , CHO Cells , Cattle , Chromatography, Affinity/methods , Cricetinae , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides/chemical synthesis , Peptides/immunology , Peptides/metabolism , Pertussis Toxin/immunology , Pertussis Vaccine/administration & dosage , Pertussis Vaccine/immunology , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL