Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924238

ABSTRACT

Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.


Subject(s)
Paclitaxel/pharmacology , Pancreatic Neoplasms/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Tissue Engineering , Tumor Microenvironment/drug effects , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Spheroids, Cellular , Stromal Cells/pathology , Tumor Cells, Cultured
2.
Mol Pharm ; 17(7): 2599-2611, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32379457

ABSTRACT

Parenteral chemotherapy is usually administered intravenously, although patient preference and health economics suggest the subcutaneous (sc) route could be an attractive alternative. However, due to the low aqueous solubility of hydrophobic drugs and injection volume limitations, the total amount of drug that can be administered in a single sc injection is frequently insufficient. We have developed hyaluronidase coated nanoparticles (NPs) that efficiently encapsulate such drugs, thus addressing both issues and allowing sufficient amounts of hydrophobic drug to be administered and absorbed effectively. CUDC-101, a poorly water-soluble multitargeted anticancer drug that simultaneously inhibits the receptor tyrosine kinases (RTKs) EGFR and HER2, as well as histone deacetylase (HDAC), was encapsulated in polymeric Molecular Envelope Technology (MET) NPs. The role of polymer chemistry, formulation parameters, and coating with hyaluronidase (HYD) on MET-CUDC-101 NP formulations was examined and optimized to yield high drug loading and colloidal stability, and, after freeze-drying, stable storage at room temperature for up to 90 days. The pharmacokinetic studies in healthy rats showed that plasma AUC0-24h after sc administration correlates tightly with formulation physical chemistry, specifically in vitro colloidal stability. Compared to uncoated NPs, the HYD-coating doubled the drug plasma exposure. In a murine A431 xenograft model, the coated HYD-MET-CUDC-101 NPs at a dose equivalent to 90 mg kg-1 CUDC-101 increased the survival time from 15 days (control animals treated with hyaluronidase alone) to 43 days. Polymer MET nanoparticles coated with hyaluronidase enabled the subcutaneous delivery of a hydrophobic drug with favorable therapeutic outcomes.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Squamous Cell/drug therapy , Drug Delivery Systems/methods , Histone Deacetylase Inhibitors/pharmacology , Hyaluronoglucosaminidase/chemistry , Hydroxamic Acids/administration & dosage , Nanoparticles/chemistry , Polymers/chemistry , Quinazolines/administration & dosage , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Chitosan/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Female , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/blood , Histone Deacetylases , Histones/metabolism , Hydrophobic and Hydrophilic Interactions , Hydroxamic Acids/blood , Hydroxamic Acids/pharmacokinetics , Mice , Mice, Nude , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Quinazolines/blood , Quinazolines/pharmacokinetics , Rats , Solubility , Xenograft Model Antitumor Assays
3.
J Pharmacol Exp Ther ; 370(3): 593-601, 2019 09.
Article in English | MEDLINE | ID: mdl-31126978

ABSTRACT

The global prevalence of neurologic disorders is rising, and yet we are still unable to deliver most drug molecules, in therapeutic quantities, to the brain. The blood brain barrier consists of a tight layer of endothelial cells surrounded by astrocyte foot processes, and these anatomic features constitute a significant barrier to drug transport from the blood to the brain. One way to bypass the blood brain barrier and thus treat diseases of the brain is to use the nasal route of administration and deposit drugs at the olfactory region of the nares, from where they travel to the brain via mechanisms that are still not clearly understood, with travel across nerve fibers and travel via a perivascular pathway both being hypothesized. The nose-to-brain route has been demonstrated repeatedly in preclinical models, with both solution and particulate formulations. The nose-to-brain route has also been demonstrated in human studies with solution and particle formulations. The entry of device manufacturers into the arena will enable the benefits of this delivery route to become translated into approved products. The key factors that determine the efficacy of delivery via this route include the following: delivery to the olfactory area of the nares as opposed to the respiratory region, a longer retention time at the nasal mucosal surface, penetration enhancement of the active through the nasal epithelia, and a reduction in drug metabolism in the nasal cavity. Indications where nose-to-brain products are likely to emerge first include the following: neurodegeneration, post-traumatic stress disorder, pain, and glioblastoma.


Subject(s)
Administration, Intranasal/methods , Brain/metabolism , Drug Delivery Systems/methods , Nose , Animals , Humans , Nasal Cavity/metabolism , Nasal Mucosa/metabolism
4.
Pharm Res ; 33(5): 1289-303, 2016 May.
Article in English | MEDLINE | ID: mdl-26903051

ABSTRACT

PURPOSE: The blood brain barrier compromises glioblastoma chemotherapy. However high blood concentrations of lipophilic, alkylating drugs result in brain uptake, but cause myelosuppression. We hypothesised that nanoparticles could achieve therapeutic brain concentrations without dose-limiting myelosuppression. METHODS: Mice were dosed with either intravenous lomustine Molecular Envelope Technology (MET) nanoparticles (13 mg kg(-1)) or ethanolic lomustine (6.5 mg kg(-1)) and tissues analysed. Efficacy was assessed in an orthotopic U-87 MG glioblastoma model, following intravenous MET lomustine (daily 13 mg kg(-1)) or ethanolic lomustine (daily 1.2 mg kg(-1) - the highest repeated dose possible). Myelosuppression and MET particle macrophage uptake were also investigated. RESULTS: The MET formulation resulted in modest brain targeting (brain/ bone AUC0-4h ratios for MET and ethanolic lomustine = 0.90 and 0.53 respectively and brain/ liver AUC0-4h ratios for MET and ethanolic lomustine = 0.24 and 0.15 respectively). The MET formulation significantly increased mice (U-87 MG tumours) survival times; with MET lomustine, ethanolic lomustine and untreated mean survival times of 33.2, 22.5 and 21.3 days respectively and there were no material treatment-related differences in blood and femoral cell counts. Macrophage uptake is slower for MET nanoparticles than for liposomes. CONCLUSIONS: Particulate drug formulations improved brain tumour therapy without major bone marrow toxicity.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/drug therapy , Brain/drug effects , Drug Delivery Systems , Glioblastoma/drug therapy , Lomustine/administration & dosage , Animals , Antineoplastic Agents, Alkylating/adverse effects , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/therapeutic use , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lomustine/adverse effects , Lomustine/pharmacokinetics , Lomustine/therapeutic use , Male , Mice , Nanoparticles/chemistry
5.
Mol Pharm ; 12(2): 420-31, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25558881

ABSTRACT

There are very few drug delivery systems that target key organs via the oral route, as oral delivery advances normally address gastrointestinal drug dissolution, permeation, and stability. Here we introduce a nanomedicine in which nanoparticles, while also protecting the drug from gastric degradation, are taken up by the gastrointestinal epithelia and transported to the lung, liver, and spleen, thus selectively enhancing drug bioavailability in these target organs and diminishing kidney exposure (relevant to nephrotoxic drugs). Our work demonstrates, for the first time, that oral particle uptake and translocation to specific organs may be used to achieve a beneficial therapeutic response. We have illustrated this using amphotericin B, a nephrotoxic drug encapsulated within N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol chitosan (GCPQ) nanoparticles, and have evidenced our approach in three separate disease states (visceral leishmaniasis, candidiasis, and aspergillosis) using industry standard models of the disease in small animals. The oral bioavailability of AmB-GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show comparable efficacy to parenteral liposomal AmB (AmBisome). Our work thus paves the way for others to use nanoparticles to achieve a specific targeted delivery of drug to key organs via the oral route. This is especially important for drugs with a narrow therapeutic index.


Subject(s)
Amphotericin B/pharmacokinetics , Drug Delivery Systems/methods , Nanoparticles/chemistry , Administration, Oral , Animals , Antifungal Agents/pharmacokinetics , Antiprotozoal Agents/pharmacokinetics , Drug Stability , Male , Mice , Mice, Inbred BALB C , Nanomedicine
6.
Mol Pharm ; 11(4): 1081-93, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24601686

ABSTRACT

Neurological diseases such as neurodegeneration, pain, psychiatric disorders, stroke, and brain cancers would greatly benefit from the use of highly potent and specific peptide pharmaceuticals. Peptides are especially desirable because of their low inherent toxicity. The presence of the blood brain barrier (BBB), their short duration of action, and their need for parenteral administration limits their clinical use. However, over the past decade there have been significant advances in delivering peptides to the central nervous system. Angiopep peptides developed by Angiochem (Montreal, Canada), transferrin antibodies developed by ArmaGen (Santa Monica, USA), and cell penetrating peptides have all shown promise in delivering therapeutic peptides across the BBB after intravenous administration. Noninvasive methods of delivering peptides to the brain include the use of chitosan amphiphile nanoparticles for oral delivery and nose to brain strategies. The uptake of the chitosan amphiphile nanoparticles by the gastrointestinal epithelium is important for oral peptide delivery. Finally protecting peptides from plasma degradation is integral to the success of most of these peptide delivery strategies.


Subject(s)
Brain/metabolism , Drug Delivery Systems , Peptides/administration & dosage , Amino Acid Sequence , Animals , Blood-Brain Barrier , Humans , Molecular Sequence Data , Nanoparticles/administration & dosage , Peptides/pharmacokinetics
7.
Pharmaceutics ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931949

ABSTRACT

Glioblastoma multiforme (GBM) is a fast-growing and aggressive brain tumour, which remains largely resistant to treatment; the prognosis for patients is poor, with a median survival time of about 12-18 months, post diagnosis. In an effort to bring more efficacious treatments to patients, we targeted the down regulation of ITCH, an E3 ligase that is overexpressed in a variety of cancers, and which inhibits P73, a tumour suppressor gene. 6-O-glycolchitosan (GC) was used to deliver siRNA ITCH (GC60-siRNA-ITCH) and gemcitabine via the nose to brain route in CD-1 nude mice which had previously been implanted intracranially with U87-MG-luc2 cells. Prior to this in vivo study, an in vitro study established the synergistic effect of siRNA-ITCH in combination with a chemotherapy drug-gemcitabine. A downregulation of ITCH, an upregulation of p73 and enhanced apoptosis were observed in vitro in U87-MG cells, using qPCR, Western blot analysis, confocal laser scanning microscopy, flow cytometry and cytotoxicity assays. When GC60-siRNA-ITCH was combined with gemcitabine, there was a resultant decrease in cell proliferation in vitro. In CD1 mice, the administration of siRNA-ITCH (7 doses of 0.081 mg/kg) alone did not significantly affect animal survival (increasing mean survival from 29 to 33 days when compared to untreated animals), whereas intranasal gemcitabine had a significant effect on survival (increasing survival from 29 to 45 days when compared to untreated animals, p < 0.01). The most significant effect was seen with combination therapy (GC60-siRNA-ITCH plus gemcitabine), where survival increased by 89%, increasing from 29 to 54 days (p < 0.01). Our data demonstrate that siRNA chemosensitises brain tumours to gemcitabine and that the nose-to-brain delivery route may be a viable route for the treatment of intracranial tumours.

8.
Int J Pharm ; 640: 123036, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37169106

ABSTRACT

Disulfiram (DS) is an anti-alcoholism drug capable of acting against important and hard-to-treat cancers. The drug's relative instability and variable absorption/distribution have led to its variable pharmacokinetics and suboptimal exposure. Hence, it was hypothesised that a nano-enabled form of DS might be able to overcome such limitations. Encapsulation of the labile DS was achieved with quaternary ammonium palmitoyl glycol chitosan (GCPQ) to form a high-capacity, soybean oil-based DS-GCPQ nanoemulsion. DS-GCPQ showed capability of oil-loading up to 50% v/v for a stable entrapment of high drug content. With increasing oil content (10 to 50% v/v), the mean particle size and polydispersity index were also increased (166 to 351 nm and 0.14 to 0.22, respectively) for a given amount of GCPQ. Formulations showed a highly positive particle surface charge (50.9 ± 1.3 mV), contributing to the colloidal stability of the individual particles. DS-GCPQ showed marked cytotoxicity against pancreatic cancer cell lines with enhanced activity in the presence of copper. An intravenous pharmacokinetic study of DS-GCPQ in vivo showed improved plasma drug stability with a DS half-life of 17 min. Prolonged survival was seen in tumour-bearing animals treated with DS-GCPQ supplemented with copper. In conclusion, DS-GCPQ nanoemulsion has the potential to be developed further for cancer therapeutic purposes.


Subject(s)
Chitosan , Disulfiram , Nanoparticles , Animals , Copper , Drug Compounding , Emulsions , Micelles , Particle Size , Chitosan/chemistry , Nanoparticle Drug Delivery System
9.
Int J Pharm ; 644: 123343, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37633538

ABSTRACT

The use of nucleic acids to treat various brain diseases could offer new therapeutic modalities, providing the nucleic acids may be effectively delivered to areas of the brain using non-toxic vectors. In this study, we present evidence that genes may be successfully delivered in a dose-dependent manner via the nose, primarily to the cerebral cortex using a 6-O-glycolchitosan (GC) formulation of plasmid DNA. Positively charged (zeta potential = +13 - + 25 mV) GC-DNA nanoparticles of 100-500 nm in diameter with favourable cell biocompatibility were shown to deliver the reporter Green Fluorescent Protein (GFP) plasmid to the U87MG cell line and the resulting protein expression was not significantly different from that obtained with Lipofectamine 2000. On intranasal delivery of GC-luciferase-plasmid nanoparticles to Balb/ C mice at 4 doses, ranging from 0.02 to 0.1 mg/ kg, luciferase activity was observed qualitatively in intact mouse brains, 48 h after intranasal, using the IV-VIS visualisation. In further confirmation of brain delivery, dose-dependent protein expression was quantified in multiple brain areas 48 h after dosing; with protein expression seen mainly in the cerebral cortex and striatum and following expression levels: cerebral cortex = olfactory bulb > striatum > brain stem > mid brain = cerebellum. No protein expression was observed in the liver and lungs of dosed animals. GC-DNA protein expression was not significantly different to that observed with Lipofectamine 2000. These results demonstrate that GC-DNA nanoparticles are able to deliver genes preferably to specific brain regions such as the cerebral cortex and striatum; offering the possibility of using genes to treat a range of neurological disorders using a non-invasive method of dosing.


Subject(s)
Brain Diseases , Nucleic Acids , Animals , Mice , Nose , Brain , Cerebral Cortex
10.
Pharmaceutics ; 15(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37111536

ABSTRACT

A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.

11.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513938

ABSTRACT

Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.

12.
Mol Pharm ; 9(6): 1665-80, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22574705

ABSTRACT

The oral use of neuropeptides to treat brain disease is currently not possible because of a combination of poor oral absorption, short plasma half-lives and the blood-brain barrier. Here we demonstrate a strategy for neuropeptide brain delivery via the (a) oral and (b) intravenous routes. The strategy is exemplified by a palmitic ester prodrug of the model drug leucine(5)-enkephalin, encapsulated within chitosan amphiphile nanoparticles. Via the oral route the nanoparticle-prodrug formulation increased the brain drug levels by 67% and significantly increased leucine(5)-enkephalin's antinociceptive activity. The nanoparticles facilitate oral absorption and the prodrug prevents plasma degradation, enabling brain delivery. Via the intravenous route, the nanoparticle-prodrug increases the peptide brain levels by 50% and confers antinociceptive activity on leucine(5)-enkephalin. The nanoparticle-prodrug enables brain delivery by stabilizing the peptide in the plasma although the chitosan amphiphile particles are not transported across the blood-brain barrier per se, and are excreted in the urine.


Subject(s)
Brain/metabolism , Enkephalins/administration & dosage , Enkephalins/chemistry , Nanoparticles/administration & dosage , Peptides/administration & dosage , Peptides/chemistry , Prodrugs/administration & dosage , Administration, Oral , Animals , Blood-Brain Barrier/metabolism , Enkephalins/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Nanoparticles/chemistry , Peptides/chemical synthesis , Prodrugs/chemical synthesis , Prodrugs/chemistry , Rats , Rats, Wistar
13.
Biomedicines ; 10(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36140283

ABSTRACT

Therapeutic gene silencing in the brain is usually achieved using highly invasive intracranial administration methods and/or comparatively toxic vectors. In this work, we use a relatively biocompatible vector: poly(ethylene glycol) star-shaped polymer capped with amine groups (4APPA) via the nose to brain route. 4APPA complexes anti- itchy E3 ubiquitin protein ligase (anti-ITCH) siRNA to form positively charged (zeta potential +15 ± 5 mV) 150 nm nanoparticles. The siRNA-4APPA polyplexes demonstrated low cellular toxicity (IC50 = 13.92 ± 6 mg mL-1) in the A431 cell line and were three orders of magnitude less toxic than Lipofectamine 2000 (IC50 = 0.033 ± 0.04 mg mL-1) in this cell line. Cell association and uptake of fluorescently labelled siRNA bound to siRNA-4APPA nanoparticles was demonstrated using fluorescent activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM), respectively. Gene silencing of the ITCH gene was observed in vitro in the A431 cell line (65% down regulation when compared to the use of anti-ITCH siRNA alone). On intranasal dosing with fluorescently labelled siRNA-4APPA polyplexes, fluorescence was seen in the cells of the olfactory bulb, cerebral cortex and mid-brain regions. Finally, down regulation of ITCH was seen in the brain cells (54 ± 13% ITCH remaining compared to untreated controls) in a healthy rat model, following intranasal dosing of siRNA-4APPA nanoparticles (0.15 mg kg-1 siRNA twice daily for 3 days). Gene silencing in the brain may be achieved by intranasal administration of siRNA- poly(ethylene glycol) based polyplexes.

14.
Pharmaceutics ; 14(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745709

ABSTRACT

Gene delivery to the cerebral cortex is challenging due to the blood brain barrier and the labile and macromolecular nature of DNA. Here we report gene delivery to the cortex using a glycol chitosan-DNA polyplex (GCP). In vitro, GCPs carrying a reporter plasmid DNA showed approximately 60% of the transfection efficiency shown by Lipofectamine lipoplexes (LX) in the U87 glioma cell line. Aiming to maximise penetration through the brain extracellular space, GCPs were coated with hyaluronidase (HYD) to form hyaluronidase-coated polyplexes (GCPH). The GCPH formulation retained approximately 50% of the in vitro hyaluronic acid (HA) digestion potential but lost its transfection potential in two-dimensional U87 cell lines. However, intranasally administered GCPH (0.067 mg kg-1 DNA) showed high levels of gene expression (IVIS imaging of protein expression) in the brain regions. In a separate experiment, involving GCP, LX and naked DNA, the intranasal administration of the GCP formulation (0.2 mg kg-1 DNA) resulted in protein expression predominantly in the cerebral cortex, while a similar dose of intranasal naked DNA led to protein expression in the cerebellum. Intranasal LX formulations did not show any evidence of protein expression. GCPs may provide a means to target protein expression to the cerebral cortex via the intranasal route.

15.
Int J Pharm ; 621: 121755, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35447226

ABSTRACT

Treatment of posterior eye diseases with intravitreal injections of drugs, while effective, is invasive and associated with side effects such as retinal detachment and endophthalmitis. In this work, we have formulated a model compound, rapamycin (RAP), in nanoparticle-based eye drops and evaluated the delivery of RAP to the posterior eye tissues in a healthy rabbit. We have also studied the formulation in experimental autoimmune uveitis (EAU) mouse model with retinal inflammation. Aqueous RAP eye drops were prepared using N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Molecular Envelope Technology - MET) containing 0.23 ± 0.001% w/v RAP with viscosity, osmolarity, and pH within the ocular comfort range, and the formulation (MET-RAP) was stable in terms of drug content at both refrigeration and room temperature for one month. The MET-RAP eye drops delivered RAP to the choroid-retina with a Cmax of 145 ± 49 ng/g (tmax = 1 h). The topical application of the MET-RAP eye drops to the EAU mouse model resulted in significant disease suppression compared to controls, with activity similar to dexamethasone eye drops. The MET-RAP eye drops also resulted in a reduction of RORγt and an increase in both Foxp3 expression and IL-10 secretion, indicating a mechanism involving the inhibition of Th17 cells and the up-regulation of T-reg cells. The MET-RAP formulation delivers RAP to the posterior eye segments, and the formulation is active in EAU.


Subject(s)
Posterior Eye Segment , Uveitis , Animals , Mice , Ophthalmic Solutions/pharmacology , Rabbits , Retina , Sirolimus/pharmacology , Uveitis/drug therapy
16.
Int J Pharm ; 618: 121658, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35292396

ABSTRACT

Levodopa (L-DOPA) is an oral Parkinson's Disease drug that generates the active metabolite - dopamine (DA) in vivo. However, oral L-DOPA exhibits low oral bioavailability, limited brain uptake, peripheral DA-mediated side effects and its poor brain bioavailability can lead to long-term complications. Here we show that L-DOPA forms stable (for at least 5 months) 300 nm nanoparticles when encapsulated within N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ). A nano-in-microparticle GCPQ-L-DOPA formulation (D50 = 7.2 µm), prepared by spray-drying, was stable for one month when stored at room and refrigeration temperatures and was capable of producing the original GCPQ-L-DOPA nanoparticles upon aqueous reconstitution. Nasal administration of reconstituted GCPQ-L-DOPA nanoparticles to rats resulted in significantly higher DA levels in the brain (Cmax of 94 ng g-1 above baseline levels 2 h post-dosing) when compared to nasal administration of L-DOPA alone, with DA being undetectable in the brain with the latter. Furthermore, nasal GCPQ-L-DOPA resulted in higher levels of L-DOPA in the plasma (a 17-fold increase in the Cmax, when compared to L-DOPA alone) with DA undetectable in the plasma from both formulations. These data provide evidence of effective delivery of DA to the brain with the GCPQ-L-DOPA formulation.


Subject(s)
Levodopa , Parkinson Disease , Animals , Biological Availability , Brain/metabolism , Dopamine , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Rats
17.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578495

ABSTRACT

Gold nanoparticles (AuNPs) are used experimentally for non-invasive in vivo Raman monitoring because they show a strong absorbance in the phototherapeutic window (650-850 nm), a feature that is accompanied by a particle size in excess of 100 nm. However, these AuNPs cannot be used clinically because they are likely to persist in mammalian systems and resist excretion. In this work, clustered ultrasmall (sub-5 nm) AuNP constructs for in vivo Raman diagnostic monitoring, which are also suitable for mammalian excretion, were synthesized and characterized. Sub-5 nm octadecyl amine (ODA)-coated AuNPs were clustered using a labile dithiol linker: ethylene glycol bis-mercaptoacetate (EGBMA). Upon clustering via a controlled reaction and finally coating with a polymeric amphiphile, a strong absorbance in the phototherapeutic window was demonstrated, thus showing the potential suitability of the construct for non-invasive in vivo detection and monitoring. The clusters, when labelled with a biphenyl-4-thiol (BPT) Raman tag, were shown to elicit a specific Raman response in plasma and to disaggregate back to sub-5 nm particles under physiological conditions (37 °C, 0.8 mM glutathione, pH 7.4). These data demonstrate the potential of these new AuNP clusters (Raman NanoTheranostics-RaNT) for in vivo applications while being in the excretable size window.

18.
Pharmaceutics ; 13(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069936

ABSTRACT

Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular penetration enhancer is showcased, which may be used for the formulation of hydrophobic actives. The activity of this penetration enhancer is demonstrated in a healthy rabbit model. The Molecular Envelope Technology (MET) polymer (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan), a self-assembling, micelle-forming polymer, was used to formulate CsA into sterile filtered nanoparticulate eye drop formulations and the stability of the formulation tested. Healthy rabbits were dosed with a single dose of a MET-CsA (NM133) 0.05% formulation and ocular tissues analyzed. Optically clear NM133 formulations were prepared containing between 0.01-0.1% w/v CsA and 0.375-0.75% w/v MET polymer. NM133 0.01%, NM133 0.02% and NM133 0.05% were stable for 28 days when stored at refrigeration temperature (5-6 °C) and room temperature (16-23 °C), but there was evidence of evaporation of the formulation at 40 °C. There was no change in drug content when NM133 0.05% was stored for 387 days at 4 °C. On topical dosing to rabbits, corneal, conjunctival and scleral AUC0-24 levels were 25,780 ng.h g-1, 12,046 ng.h g-1 and 5879 ng.h g-1, respectively, with NM133 0.05%. Meanwhile, a similar dose of Restasis 0.05% yielded lower values of 4726 ng.h/g, 4813 ng.h/g and 1729 ng.h/g for the drug corneal, conjunctival and scleral levels, respectively. NM133 thus delivered up to five times more CsA to the ocular surface tissues when compared to Restasis. The MET polymer was non-irritant up to a concentration of 4% w/v. The MET polymer is a non-irritant ocular penetration enhancer that may be used to deliver hydrophobic drugs in optically clear topical ocular formulations.

19.
Int J Pharm ; 599: 120364, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33571621

ABSTRACT

Tacrolimus (TAC) suspension is used to treat moderate to severe atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC). The objectives of this study were to formulate the hydrophobic compound TAC (TAC) in an aqueous eye drop formulation and study its ocular biodistribution on topical ocular application to a healthy rabbit model, with the overall aim of using the formulation to treat AKC and VKC. A thin-film hydration method was used to encapsulate TAC within the chitosan-based amphiphile: N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Molecular Envelope Technology - MET) in an aqueous formulation. The formulation was characterized, and its stability studied under three storage conditions for one month. The ocular distribution of the formulation was studied in healthy rabbits and the ocular tissues and the whole blood analyzed by LC-MS/MS. A 200 nm nanoparticle formulation (MET-TAC) containing 0.1 ± 0.002% w/v TAC was produced with viscosity, osmolarity and pH within the ocular comfort range, and the formulation was stable on refrigeration for one month. On topical application, the TAC concentrations in rabbit cornea and conjunctiva one hour after dosing were 4452 ± 2289 and 516 ± 180 ng/g of tissue, respectively. A topical ocular aqueous TAC eye drop formulation has been prepared with the ability to deliver sufficient drug to the relevant ocular surface tissues.


Subject(s)
Tacrolimus , Tandem Mass Spectrometry , Administration, Topical , Animals , Chromatography, Liquid , Ophthalmic Solutions , Rabbits , Tissue Distribution
20.
Cell Signal ; 81: 109931, 2021 05.
Article in English | MEDLINE | ID: mdl-33529758

ABSTRACT

Chemoresistance is one of the barriers for the development of bladder cancer treatments. Previously, we showed that glycoprotein-130 (GP130) is overexpressed in chemoresistant bladder cancer cells and that knocking down GP130 expression reduced cell viability. In our current work, we showed that down-regulation of GP130 sensitized bladder cancer cells to cisplatin-based chemotherapy by activating DNA repair signaling. We performed immunohistochemistry and demonstrated a positive correlation between the levels of Ku70, an initiator of canonical non-homologous end joining repair (c-NHEJ) and suppressor of apoptosis, and GP130 in human bladder cancer specimens. GP130 knockdown by SC144, a small molecule inhibitor, in combination with cisplatin, increased the number of DNA lesions, specifically DNA double-stranded breaks, with a subsequent increase in apoptosis and reduced cell viability. Furthermore, GP130 inhibition attenuated Ku70 expression in bladder and breast cancer cells as well as in transformed kidney cells. In addition, we fabricated a novel polymer-lipid hybrid delivery system to facilitate GP130 siRNA delivery that had a similar efficiency when compared with Lipofectamine, but induced less toxicity.


Subject(s)
Apoptosis/drug effects , Cisplatin/pharmacology , Cytokine Receptor gp130/biosynthesis , DNA Repair , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Ku Autoantigen/metabolism , Neoplasm Proteins/metabolism , Signal Transduction/drug effects , Urinary Bladder Neoplasms/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Male , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL