Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 226(10): 1781-1789, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35255136

ABSTRACT

BACKGROUND: Immunocompromised individuals can become chronically infected with norovirus, but effective antiviral therapies are not yet available. METHODS: Treatments with nitazoxanide, ribavirin, interferon alpha-2a, and nasoduodenally administered immunoglobulins were evaluated sequentially in an immunocompromised patient chronically infected with norovirus. In support, these components were also applied to measure norovirus inhibition in intestinal enteroid cultures in vitro. Viral RNA levels were determined in fecal and plasma samples during each treatment and viral genomes were sequenced. RESULTS: None of the antivirals resulted in a reduction of viral RNA levels in feces or plasma. However, during ribavirin treatment, there was an increased accumulation of virus genome mutations. In vitro, an effect of interferon alpha-2a on virus replication was observed and a genetically related strain was neutralized effectively in vitro using immunoglobulins and post-norovirus-infection antiserum. In agreement, after administration of immunoglobulins, the patient cleared the infection. CONCLUSIONS: Intestinal enteroid cultures provide a relevant system to evaluate antivirals and the neutralizing potential of immunoglobulins. We successfully treated a chronically infected patient with immunoglobulins, despite varying results reported by others. This case study provides in-depth, multifaceted exploration of norovirus treatment that can be used as a guidance for further research towards norovirus treatments.


Subject(s)
Caliciviridae Infections , Common Variable Immunodeficiency , Norovirus , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Caliciviridae Infections/drug therapy , Common Variable Immunodeficiency/complications , Common Variable Immunodeficiency/drug therapy , Immunoglobulins , Interferon-alpha/therapeutic use , Norovirus/genetics , Ribavirin/therapeutic use , Ribavirin/pharmacology , RNA, Viral/genetics , Virus Replication
2.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33115870

ABSTRACT

Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.


Subject(s)
Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Disease Models, Animal , Gastroenteritis/virology , Intestinal Mucosa/virology , Norovirus/physiology , Virus Attachment , Amino Acid Sequence , Animals , Caliciviridae Infections/metabolism , Caliciviridae Infections/pathology , Feces/virology , Gastroenteritis/metabolism , Gastroenteritis/pathology , Humans , Intestinal Mucosa/metabolism , Sequence Homology
3.
Emerg Infect Dis ; 27(5): 1405-1415, 2021 05.
Article in English | MEDLINE | ID: mdl-33900177

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a major global health problem, and public health surveillance is crucial to monitor and prevent virus spread. Wastewater-based epidemiology has been proposed as an addition to disease-based surveillance because virus is shed in the feces of ≈40% of infected persons. We used next-generation sequencing of sewage samples to evaluate the diversity of SARS-CoV-2 at the community level in the Netherlands and Belgium. Phylogenetic analysis revealed the presence of the most prevalent clades (19A, 20A, and 20B) and clustering of sewage samples with clinical samples from the same region. We distinguished multiple clades within a single sewage sample by using low-frequency variant analysis. In addition, several novel mutations in the SARS-CoV-2 genome were detected. Our results illustrate how wastewater can be used to investigate the diversity of SARS-CoV-2 viruses circulating in a community and identify new outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , Wastewater
4.
J Infect Dis ; 216(12): 1513-1524, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29029115

ABSTRACT

Background: The genus Norovirus comprises large genetic diversity, and new GII.4 variants emerge every 2-3 years. It is unknown in which host these new variants originate. Here we study whether prolonged shedders within the immunocompromised population could be a reservoir for newly emerging strains. Methods: Sixty-five fecal samples from 16 immunocompromised patients were retrospectively selected. Isolated viral RNA was enriched by hybridization with a custom norovirus whole-genome RNA bait set and deep sequenced on the Illumina MiSeq platform. Results: Patients shed virus for average 352 days (range, 76-716 days). Phylogenetic analysis showed distinct GII.4 variants in 3 of 13 patients (23%). The viral mutation rates were variable between patients but did not differ between various immune status groups. All within-host GII.4 viral populations showed amino acid changes at blocking epitopes over time, and the majority of VP1 amino acid mutations were located at the capsid surface. Conclusions: This study found viruses in immunocompromised hosts that are genetically distinct from viruses circulating in the general population, and these patients therefore may contain a reservoir for newly emerging strains. Future studies need to determine whether these new strains are of risk to other immunocompromised patients and the general population.


Subject(s)
Caliciviridae Infections/virology , Evolution, Molecular , Genome, Viral , Immunocompromised Host , Norovirus/classification , Norovirus/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Chronic Disease , Disease Reservoirs/virology , Feces/virology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation Rate , Norovirus/isolation & purification , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Retrospective Studies , Time Factors , Virus Shedding , Whole Genome Sequencing , Young Adult
5.
Emerg Infect Dis ; 21(7): 1205-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079061

ABSTRACT

A fox circovirus was identified in serum samples from foxes with unexplained neurologic signs by using viral metagenomics. Fox circovirus nucleic acid was localized in histological lesions of the cerebrum by in situ hybridization. Viruses from the family Circoviridae may have neurologic tropism more commonly than previously anticipated.


Subject(s)
Circoviridae Infections/veterinary , Circovirus/isolation & purification , Foxes/virology , Meningoencephalitis/veterinary , Animals , Brain/pathology , Brain/virology , Circoviridae Infections/diagnosis , Circoviridae Infections/virology , Circovirus/genetics , Female , Male , Meningoencephalitis/diagnosis , Meningoencephalitis/virology , Molecular Diagnostic Techniques , Real-Time Polymerase Chain Reaction , United Kingdom
6.
Emerg Infect Dis ; 20(7): 1218-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24964003

ABSTRACT

Emerging viral infections can be identified by using a viral metagenomics approach for clinical human material. Diarrhea samples of patients with unexplained gastroenteritis from the Netherlands were analyzed by using viral metagenomics. Novel circular DNA viruses, bufaviruses, and genogroup III picobirnaviruses were identified. These data expand our knowledge of the human virome.


Subject(s)
Diarrhea/virology , Virus Diseases/virology , Viruses/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Gastroenteritis/virology , Humans , Infant , Metagenomics/methods , Middle Aged , Netherlands , Phylogeny
7.
J Clin Microbiol ; 52(10): 3722-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25100822

ABSTRACT

Efficient detection of human respiratory viral pathogens is crucial in the management of patients with acute respiratory tract infection. Sequence-independent amplification of nucleic acids combined with next-generation sequencing technology and bioinformatics analyses is a promising strategy for identifying pathogens in clinical and public health settings. It allows the characterization of hundreds of different known pathogens simultaneously and of novel pathogens that elude conventional testing. However, major hurdles for its routine use exist, including cost, turnaround time, and especially sensitivity of the assay, as the detection limit is dependent on viral load, host genetic material, and sequencing depth. To obtain insights into these aspects, we analyzed nasopharyngeal aspirates from a cohort of 81 Thai children with respiratory disease for the presence of respiratory viruses using a sequence-independent next-generation sequencing approach and routinely used diagnostic real-time reverse transcriptase PCR (real-time RT-PCR) assays. With respect to the detection of rhinovirus and human metapneumovirus, the next-generation sequencing approach was at least as sensitive as diagnostic real-time RT-PCR in this small cohort, whereas for bocavirus and enterovirus, next-generation sequencing was less sensitive than real-time RT-PCR. The advantage of the sequencing approach over real-time RT-PCR was the immediate availability of virus-typing information. Considering the development of platforms capable of generating more output data at declining costs, next-generation sequencing remains of interest for future virus diagnosis in clinical and public health settings and certainly as an additional tool when screening results from real-time RT-PCR are negative.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Respiratory Tract Infections/diagnosis , Virus Diseases/diagnosis , Viruses/classification , Viruses/isolation & purification , Adolescent , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Molecular Sequence Data , Nasopharynx/virology , Respiratory Tract Infections/virology , Sensitivity and Specificity , Sequence Analysis, DNA , Thailand , Virology/methods , Virus Diseases/virology , Viruses/genetics
8.
Virol J ; 11: 89, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24886057

ABSTRACT

BACKGROUND: Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans. METHODS: In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing. Samples were collected from American mink (Neovison vison), European mink (Mustela lutreola), European polecat (Mustela putorius), European pine marten (Martes martes), stone marten (Martes foina), Eurasian otter (Lutra lutra) and Eurasian badger (Meles meles) of the family of Mustelidae; common genet (Genetta genetta) of the family of Viverridae; red fox (Vulpes vulpes) of the family of Canidae and European wild cat (Felis silvestris) of the family of Felidae. RESULTS: A number of sequences of possible novel viruses or virus variants were detected, including a theilovirus, phleboviruses, an amdovirus, a kobuvirus and picobirnaviruses. CONCLUSIONS: Using random PCR in combination with next generation sequencing, sequences of various novel viruses or virus variants were detected in fecal samples collected from Spanish carnivores. Detected novel viruses highlight the viral diversity that is present in fecal material of wild carnivores.


Subject(s)
Biodiversity , Carnivora/virology , Feces/virology , Viruses/classification , Viruses/isolation & purification , Animals , High-Throughput Nucleotide Sequencing , Metagenomics , Molecular Sequence Data , Polymerase Chain Reaction , Spain , Viruses/genetics
9.
Emerg Infect Dis ; 19(9)2013.
Article in English | MEDLINE | ID: mdl-23968557

ABSTRACT

To identify unknown human viruses, we analyzed serum and cerebrospinal fluid samples from patients with unexplained paraplegia from Malawi by using viral metagenomics. A novel cyclovirus species was identified and subsequently found in 15% and 10% of serum and cerebrospinal fluid samples, respectively. These data expand our knowledge of cyclovirus diversity and tropism.


Subject(s)
Cerebrospinal Fluid/virology , Circoviridae Infections/virology , Circoviridae/genetics , Circoviridae/classification , Circoviridae Infections/epidemiology , Gene Order , Genes, Viral , Genome, Viral , Humans , Malawi , Metagenomics , Molecular Sequence Data , Phylogeny , Prevalence
10.
Sci Total Environ ; 873: 162209, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796689

ABSTRACT

Monitoring of SARS-CoV-2 in wastewater (WW) is a promising tool for epidemiological surveillance, correlating not only viral RNA levels with the infection dynamics within the population, but also to viral diversity. However, the complex mixture of viral lineages in WW samples makes tracking of specific variants or lineages circulating in the population a challenging task. We sequenced sewage samples of 9 WW-catchment areas within the city of Rotterdam, used specific signature mutations from individual SARS-CoV-2 lineages to estimate their relative abundances in WW and compared them against those observed in clinical genomic surveillance of infected individuals between September 2020 and December 2021. We showed that especially for dominant lineages, the median of the frequencies of signature mutations coincides with the occurrence of those lineages in Rotterdam's clinical genomic surveillance. This, along with digital droplet RT-PCR targeting signature mutations of specific variants of concern (VOCs), showed that several VOCs emerged, became dominant and were replaced by the next VOC in Rotterdam at different time points during the study. In addition, single nucleotide variant (SNV) analysis provided evidence that spatio-temporal clusters can also be discerned from WW samples. We were able to detect specific SNVs in sewage, including one resulting in the Q183H amino acid change in the Spike gene, that was not captured by clinical genomic surveillance. Our results highlight the potential use of WW samples for genomic surveillance, increasing the set of epidemiological tools to monitor SARS-CoV-2 diversity.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2/genetics , Sewage , COVID-19/epidemiology
11.
Emerg Infect Dis ; 18(7): 1192-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22709854

ABSTRACT

To identify unknown human viruses in the enteric tract, we examined 105 stool specimens from patients with diarrhea in Bangladesh. A novel calicivirus was identified in a sample from 1 patient and subsequently found in samples from 5 other patients. Phylogenetic analyses classified this virus within the proposed genus Recovirus.


Subject(s)
Caliciviridae/classification , Caliciviridae/genetics , Diarrhea/epidemiology , Diarrhea/virology , Feces/virology , Adolescent , Adult , Bangladesh/epidemiology , Caliciviridae/isolation & purification , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Child , Child, Preschool , Humans , Infant , Middle Aged , Phylogeny , RNA-Dependent RNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity , Young Adult
12.
Viruses ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36680055

ABSTRACT

Infections involving antibiotic resistant Staphylococcus aureus (S. aureus) represent a major challenge to successful treatment. Further, although bacteriophages (phages) could be an alternative to antibiotics, there exists a lack of correlation in phage susceptibility results between conventional in vitro and in vivo assays. This discrepancy may hinder the potential implementation of bacteriophage therapy. In this study, the susceptibility of twelve S. aureus strains to three commercial phage cocktails and two single phages was assessed. These S. aureus strains (including ten clinical isolates, five of which were methicillin-resistant) were compared using four assays: the spot test, efficiency of plating (EOP), the optical density assay (all in culture media) and microcalorimetry in human serum. In the spot test, EOP and optical density assay, all cocktails and single phages lysed both methicillin susceptible and methicillin resistant S. aureus strains. However, there was an absence of phage-mediated lysis in high concentrations of human serum as measured using microcalorimetry. As this microcalorimetry-based assay more closely resembles in vivo conditions, we propose that microcalorimetry could be included as a useful addition to conventional assays, thereby facilitating more accurate predictions of the in vivo susceptibility of S. aureus to phages during phage selection for therapeutic purposes.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents , Staphylococcal Infections/therapy , Staphylococcus Phages
13.
Sci Rep ; 12(1): 14275, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995986

ABSTRACT

Norovirus is a leading cause of epidemic acute gastroenteritis. More than 30 genotypes circulate in humans, some are common, and others are only sporadically detected. Here, we investigated whether serology can be used to determine which genotypes infect children. We established a multiplex protein microarray with structural and non-structural norovirus antigens that allowed simultaneous antibody testing against 30 human GI and GII genotypes. Antibody responses of sera obtained from 287 children aged < 1 month to 5.5 years were profiled. Most specific IgG and IgA responses were directed against the GII.2, GII.3, GII.4, and GII.6 capsid genotypes. While we detected antibody responses against rare genotypes, we found no evidence for wide circulation. We also detected genotype-specific antibodies against the non-structural proteins p48 and p22 in sera of older children. In this study, we show the age-dependent antibody responses to a broad range of norovirus capsid and polymerase genotypes, which will aid in the development of vaccines.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Immunity, Humoral , Norovirus , Caliciviridae Infections/immunology , Capsid Proteins/genetics , Child, Preschool , Europe , Gastroenteritis/immunology , Gastroenteritis/virology , Genotype , Humans , Infant , Norovirus/genetics , Phylogeny
14.
Viruses ; 13(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34835095

ABSTRACT

Primary varicella-zoster virus (VZV) infection leads to varicella and the establishment of lifelong latency in sensory ganglion neurons. Reactivation of latent VZV causes herpes zoster, which is frequently associated with chronic pain. Latent viral gene expression is restricted to the VZV latency-associated transcript (VLT) and VLT-ORF63 (VLT63) fusion transcripts. Since VLT and VLT63 encode proteins that are expressed during lytic infection, we investigated whether pVLT and pVLT-ORF63 are essential for VZV replication by performing VZV genome mutagenesis using CRISPR/Cas9 and BAC technologies. We first established that CRISPR/Cas9 can efficiently mutate VZV genomes in lytically VZV-infected cells through targeting non-essential genes ORF8 and ORF11 and subsequently show recovery of viable mutant viruses. By contrast, the VLT region was markedly resistant to CRISPR/Cas9 editing. Whereas most mutants expressed wild-type or N-terminally altered versions of pVLT and pVLT-ORF63, only a minority of the resulting mutant viruses lacked pVLT and pVLT-ORF63 coding potential. Growth curve analysis showed that pVLT/pVLT-ORF63 negative viruses were viable, but impaired in growth in epithelial cells. We confirmed this phenotype independently using BAC-derived pVLT/pVLT-ORF63 negative and repaired viruses. Collectively, these data demonstrate that pVLT and/or pVLT-ORF63 are dispensable for lytic VZV replication but promote efficient VZV infection in epithelial cells.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 3, Human/genetics , Viral Proteins/genetics , Virus Latency/genetics , CRISPR-Cas Systems , Cell Line , Ganglia/pathology , Ganglia/virology , Humans , Mutagenesis , Neurons/pathology , Neurons/virology , Open Reading Frames/genetics , Transcription, Genetic/drug effects , Viral Proteins/metabolism , Virus Physiological Phenomena
15.
BMC Genomics ; 11: 239, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20398277

ABSTRACT

BACKGROUND: The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. RESULTS: We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. CONCLUSIONS: Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.


Subject(s)
Enterococcus faecium/genetics , Genome, Bacterial , Genomic Islands , Bacteriophages/genetics , Bacteriophages/ultrastructure , Base Sequence , Drug Resistance, Bacterial , Enterococcus faecium/pathogenicity , Enterococcus faecium/virology , Microscopy, Electron, Transmission , Phylogeny , Virulence
16.
Microbiology (Reading) ; 156(Pt 9): 2649-2659, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20542929

ABSTRACT

Pili are hair-like structures protruding from the cell envelope of bacterial cells. Here, we describe the conditional and differential display of PilA-type pili, and PilE and PilF proteins, encoded from pilin gene cluster 1 at the surface of a hospital-acquired Enterococcus faecium bloodstream isolate (E1165) and a community-derived stool isolate (E1039), at two different temperatures. Both strains have virtually identical pilA gene clusters, as determined by sequencing. Western blotting and transmission immunoelectron microscopy revealed that PilA and PilF assembled into high-molecular-mass pilus-like structures at 37 degrees C in the E1165 strain, whereas PilE was not produced at either of the temperatures used; at 21 degrees C, PilA and PilF were cell-wall-anchored proteins. In contrast, in strain E1039, PilA, PilE and PilF pilin proteins were found to be displayed as cell-wall-anchored proteins at 37 degrees C only, and they were not associated with pilus-like structures. The discrepancy in pilus assembly between E1039 and E1165 cannot be explained by differences in expression of the genes encoding the predicted sortases in the pilA gene cluster, as these had similar expression levels in both strains at 21 and 37 degrees C. Double-labelling electron microscopy revealed that PilA formed the pilus backbone in E1165, and PilF the minor subunit which was distributed along the PilA pilus shaft and positioned at the tip; however, it was deposited as a cell-wall-anchored protein in a pilA isogenic mutant. The differential deposition of surface proteins from pilin gene cluster 1 and differences in pilus assembly in the two strains suggest a complex post-transcriptional regulatory mechanism of pilus biogenesis in E. faecium.


Subject(s)
Community-Acquired Infections/microbiology , Cross Infection/microbiology , Enterococcus faecium/metabolism , Fimbriae Proteins/metabolism , Gram-Positive Bacterial Infections/microbiology , Enterococcus faecium/chemistry , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Humans , Molecular Weight , Temperature
17.
PLoS One ; 15(2): e0229326, 2020.
Article in English | MEDLINE | ID: mdl-32078666

ABSTRACT

As high-throughput sequencing technologies are becoming more widely adopted for analysing pathogens in disease outbreaks there needs to be assurance that the different sequencing technologies and approaches to data analysis will yield reliable and comparable results. Conversely, understanding where agreement cannot be achieved provides insight into the limitations of these approaches and also allows efforts to be focused on areas of the process that need improvement. This manuscript describes the next-generation sequencing of three closely related viruses, each analysed using different sequencing strategies, sequencing instruments and data processing pipelines. In order to determine the comparability of consensus sequences and minority (sub-consensus) single nucleotide variant (mSNV) identification, the biological samples, the sequence data from 3 sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in the final result could be attributed to all stages in the process, but the most critical were the well-known homopolymer errors introduced by 454 sequencing, and the alignment processes in the different data processing pipelines which affected the consistency of mSNV detection. However, homopolymer errors aside, there was generally a good agreement between consensus sequences that were obtained for all combinations of sequencing platforms and data processing pipelines. Nevertheless, minority variant analysis will need a different level of careful standardization and awareness about the possible limitations, as shown in this study.


Subject(s)
Disease Outbreaks/veterinary , Ducks/virology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/methods , Animals , Genome, Viral , Orthomyxoviridae Infections/virology , RNA, Viral/analysis , RNA, Viral/genetics , Sequence Analysis, DNA
18.
Zoonoses Public Health ; 67(4): 453-459, 2020 06.
Article in English | MEDLINE | ID: mdl-32037743

ABSTRACT

Norovirus constitutes the most frequently identified infectious cause of disease outbreaks associated with untreated recreational water. When investigating outbreaks related to surface water, a One Health approach is insightful. Historically, there has been a focus on potential contamination of recreational water by bird droppings and a recent publication demonstrating human noroviruses in bird faeces suggested this should be investigated in future water-related norovirus outbreaks. Here, we describe a One Health approach investigating a norovirus outbreak in a natural playground. On social media, a large amount of waterfowl were reported to defecate near these playground premises leading to speculations about their potential involvement. Surface water, as well as human and bird faecal specimens, was tested for human noroviruses. Norovirus was found to be the most likely cause of the outbreak but there was no evidence for transmission via waterfowl. Cases had become known on social media prior to notification to the public health service underscoring the potential of online media as an early warning system. In view of known risk factors, advice was given for future outbreak investigations and natural playground design.


Subject(s)
Caliciviridae Infections/virology , Norovirus/genetics , Parks, Recreational , Water Microbiology , Zoonoses , Adolescent , Adult , Animals , Anseriformes , Bird Diseases/virology , Caliciviridae Infections/veterinary , Child , Child, Preschool , Disease Notification , Disease Outbreaks , Feces/virology , Humans , One Health , Phylogeny , Risk Factors , Young Adult
19.
Infect Immun ; 77(11): 5097-106, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19737906

ABSTRACT

Hospital-acquired Enterococcus faecium isolates responsible for nosocomial outbreaks and invasive infections are enriched in the orf2351 and orf2430 genes, encoding the SgrA and EcbA LPXTG-like cell wall-anchored proteins, respectively. These two surface proteins were characterized to gain insight into their function, since they may have favored the rapid emergence of this nosocomial pathogen. We are the first to identify a surface adhesin among bacteria (SgrA) that binds to the extracellular matrix molecules nidogen 1 and nidogen 2, which are constituents of the basal lamina. EcbA is a novel E. faecium MSCRAMM (microbial surface component recognizing adhesive matrix molecules) that binds to collagen type V. In addition, both SgrA and EcbA bound to fibrinogen; however, SgrA targeted the alpha and beta chains, whereas EcbA bound to the gamma chain of fibrinogen. An E. faecium sgrA insertion mutant displayed reduced binding to both nidogens and fibrinogen. SgrA did not mediate binding of E. faecium cells to biotic materials, such as human intestinal epithelial cells, human bladder cells, and kidney cells, while this LPXTG surface adhesin is implicated in E. faecium biofilm formation. The acm and scm genes, encoding two other E. faecium MSCRAMMs, were expressed at the mRNA level together with sgrA during all phases of growth, whereas ecbA was expressed only in exponential and late exponential phase, suggesting orchestrated expression of these adhesins. Expression of these surface proteins, which bind to extracellular matrix proteins and are involved in biofilm formation (SgrA), may contribute to the pathogenesis of hospital-acquired E. faecium infections.


Subject(s)
Adhesins, Bacterial/genetics , Biofilms , Cross Infection/genetics , Enterococcus faecium/physiology , Gram-Positive Bacterial Infections/genetics , Adhesins, Bacterial/metabolism , Amino Acid Sequence , Bacterial Adhesion/genetics , Blotting, Southern , Blotting, Western , Collagen/metabolism , Cross Infection/metabolism , Electrophoresis, Polyacrylamide Gel , Enterococcus faecium/pathogenicity , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Expression Regulation, Bacterial , Gram-Positive Bacterial Infections/metabolism , Humans , Membrane Glycoproteins/metabolism , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
20.
Front Microbiol ; 10: 2394, 2019.
Article in English | MEDLINE | ID: mdl-31681246

ABSTRACT

Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were used to study norovirus diversity. A double approach, agnostic deep sequencing and a capture-based approach (VirCapSeq-VERT) was used to identify norovirus in environmental samples. Family-specific viral contigs were classified and sorted by SLIM and final norovirus contigs were genotyped using the online Norovirus genotyping tool v2.0. From sewage samples, 14 norovirus genogroup I sequences were identified of which six were complete genomes. For norovirus genogroup II, nine sequences were identified and three of them comprised more than half of the genome. In oyster samples bioaccumulated with these sewage samples, only the use of an enrichment step during library preparation allowed successful identification of nine different sequences of norovirus genogroup I and four for genogroup II (>500 bp). This study demonstrates the importance of method development to increase virus recovery, and the interest of a capture-based approach to be able to identify viruses present at low concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL