Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278966

ABSTRACT

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Subject(s)
Antibodies, Bispecific , HIV-1 , Animals , Mice , Humans , Killer Cells, Natural , Cytotoxicity, Immunologic , Cell Death , Mice, Transgenic
2.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
3.
Cell ; 160(3): 420-32, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635456

ABSTRACT

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Virus Integration , Virus Latency , Alu Elements , Clone Cells , Defective Viruses/genetics , Defective Viruses/physiology , HIV Infections/drug therapy , HIV-1/genetics , Humans , Immunologic Memory , Proviruses/physiology , Single-Cell Analysis
4.
Cell ; 155(3): 540-51, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243014

ABSTRACT

Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated.


Subject(s)
HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , Virus Latency , Base Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , DNA Methylation , HIV Long Terminal Repeat , Lymphocyte Activation , Molecular Sequence Data , Mutation , Phylogeny , Proviruses/genetics , Sequence Alignment
5.
Immunity ; 48(5): 872-895, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768175

ABSTRACT

Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Proviruses/immunology , Virus Latency/immunology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Models, Immunological , Proviruses/drug effects , Viral Load/drug effects , Viral Load/immunology , Virus Latency/drug effects , Virus Replication/drug effects , Virus Replication/immunology
6.
Cell ; 148(6): 1271-83, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22424234

ABSTRACT

Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.


Subject(s)
Drug Resistance , HIV Infections/drug therapy , Malaria/drug therapy , Tuberculosis/drug therapy , Animals , Disease Models, Animal , HIV Infections/virology , HIV-1/drug effects , Humans , Malaria/parasitology , Mycobacterium tuberculosis/drug effects , Plasmodium/drug effects , Tuberculosis/microbiology
7.
Trends Immunol ; 44(3): 147-149, 2023 03.
Article in English | MEDLINE | ID: mdl-36739207

ABSTRACT

The latent reservoir for HIV-1 prevents cure but is difficult to characterize due to the low frequency of latently infected cells and the absence of unique markers. Sun et al. used single cell analysis of T cell surface phenotypes to provide evidence for immune selection of reservoir cells.


Subject(s)
HIV Infections , HIV-1 , Humans , CD4-Positive T-Lymphocytes , Virus Latency , Virus Replication
8.
Immunity ; 47(4): 766-775.e3, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045905

ABSTRACT

The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cellular Reprogramming/immunology , HIV-1/immunology , Immunologic Memory/immunology , Transcription, Genetic , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Cellular Reprogramming/genetics , Cytokines/genetics , Cytokines/immunology , Female , Flow Cytometry , Gene Expression Profiling/methods , HIV-1/physiology , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Virus Latency/immunology , Virus Replication/immunology
9.
Nature ; 585(7824): 261-267, 2020 09.
Article in English | MEDLINE | ID: mdl-32848246

ABSTRACT

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Subject(s)
Gene Silencing , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Heterochromatin/genetics , Proviruses/genetics , Virus Integration/genetics , Virus Latency/genetics , Adult , Aged , Centromere/genetics , Chromosomes, Human, Pair 19/genetics , DNA, Satellite/genetics , Female , Genome, Viral/genetics , HIV Infections/blood , HIV-1/isolation & purification , Heterochromatin/metabolism , Humans , Male , Middle Aged , Proviruses/isolation & purification , Repressor Proteins/genetics , Transcription Initiation Site
10.
Proc Natl Acad Sci U S A ; 120(43): e2313209120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844236

ABSTRACT

The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention. However, most proviruses persisting in the setting of ART are defective. In addition, intact HIV-1 and SIV genomes undergo complex, multiphasic decay observable when new infection events are blocked by ART. Intervention-induced elimination of latently infected cells must be distinguished from natural decay. Here, we address these issues for SHIV. We describe an intact proviral DNA assay that allows digital counting of SHIV genomes lacking common fatal defects. We show that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase (t1/2 = 30.1 d) and a slower second phase (t1/2 = 8.1 mo) that is still more rapid that the slow decay observed in people with HIV-1 on long-term ART (t1/2 = 3.7 y). In SHIV models, most interventions are tested during 2nd phase decay. Natural 2nd phase decay must be considered in evaluating interventions as most infected cells present at this time do not become part of the stable reservoir. In addition, for interventions tested during 2nd phase decay, a caveat is that the intervention may not be equally effective in people with HIV on long-term ART whose reservoirs are dominated by latently infected cells with a slower decay rate.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/genetics , Simian Acquired Immunodeficiency Syndrome/drug therapy , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Virus Replication , Macaca mulatta , HIV Infections/drug therapy , Proviruses/genetics , HIV-1/genetics , CD4-Positive T-Lymphocytes , Viral Load
11.
Nature ; 566(7742): 120-125, 2019 02.
Article in English | MEDLINE | ID: mdl-30700913

ABSTRACT

A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Carrier State/virology , Defective Viruses/isolation & purification , HIV Infections/virology , HIV-1/isolation & purification , Proviruses/isolation & purification , Virus Latency , CD4-Positive T-Lymphocytes/cytology , Carrier State/therapy , Cell Line , DNA, Viral/analysis , DNA, Viral/genetics , Defective Viruses/genetics , Defective Viruses/physiology , HIV Infections/therapy , HIV-1/genetics , HIV-1/physiology , Humans , Lymphocyte Activation , Polymerase Chain Reaction , Proviruses/genetics , Proviruses/physiology
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110411

ABSTRACT

In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Proviruses/drug effects , Virion/drug effects , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , DNA, Viral/drug effects , Humans , Longitudinal Studies , Viral Load/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
13.
Proc Natl Acad Sci U S A ; 119(15): e2123406119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394875

ABSTRACT

HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. "Shock-and-kill" approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.


Subject(s)
Antibodies, Bispecific , HIV Infections , HIV Seropositivity , HIV-1 , CD4-Positive T-Lymphocytes , Humans , Molecular Mimicry , Receptors, Antigen, T-Cell , Virus Latency
14.
PLoS Pathog ; 18(9): e1010845, 2022 09.
Article in English | MEDLINE | ID: mdl-36074794

ABSTRACT

Antiretroviral therapy (ART) effectively inhibits HIV-1 replication but is not curative due to the persistence of a latent viral reservoir in resting CD4+ T cells. This reservoir is a major barrier to cure. Sequencing studies have revealed that the population of proviruses persisting in ART-treated individuals is dominated by defective proviruses that cannot give rise to viral rebound due to fatal defects including large deletions and APOBEC3-mediated hypermutation. Near full genome sequencing (nFGS) of individual proviruses is used in reservoir assays to provide an estimate of the fraction of proviruses that are intact. nFGS methods rely on a long-distance outer PCR capturing most (~9 kb) of the genome, followed by nested inner PCRs. The outer PCR is carried out at limit dilution, and interpretation of the results is based on the assumption that all proviruses are quantitatively captured. Here, we evaluate nFGS methods using the intact proviral DNA assay (IPDA), a multiplex digital droplet PCR assay that quantitates intact and defective proviruses with single molecule sensitivity using only short, highly efficient amplicons. We analyzed proviral templates of known sequence to avoid the additional complication of sequence polymorphism. With the IPDA, we quantitated molecular yields at each step of nFGS methods. We demonstrate that nFGS methods are inefficient and miss ~70% of full-length proviruses due to amplification failure at the initial outer PCR step. In contrast, proviruses with large internal deletions encompassing 70% of the genome can be quantitatively amplified under the same conditions. Accurate measurement of the latent reservoir of HIV-1 is essential for evaluating the efficacy of cure strategies, and the bias against full length proviruses in nFGS methods must be considered.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV-1/genetics , Humans , Proviruses/genetics , Viral Load
15.
J Infect Dis ; 228(9): 1274-1279, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37379584

ABSTRACT

The latent viral reservoir (LVR) remains a major barrier to HIV-1 curative strategies. It is unknown whether receiving a liver transplant from a donor with HIV might lead to an increase in the LVR because the liver is a large lymphoid organ. We found no differences in intact provirus, defective provirus, or the ratio of intact to defective provirus between recipients with ART-suppressed HIV who received a liver from a donor with (n = 19) or without HIV (n = 10). All measures remained stable from baseline by 1 year posttransplant. These data demonstrate that the LVR is stable after liver transplantation in people with HIV. Clinical Trials Registration. NCT02602262 and NCT03734393.


Subject(s)
HIV Infections , HIV Seropositivity , Liver Transplantation , Humans , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , Proviruses , Viral Load , Virus Latency
16.
Proc Natl Acad Sci U S A ; 117(31): 18692-18700, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690683

ABSTRACT

A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (∼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.


Subject(s)
DNA, Viral/blood , HIV Infections , Proviruses/genetics , Virus Latency/genetics , Adult , Female , HIV Infections/blood , HIV Infections/epidemiology , HIV Infections/virology , Humans , Male , Middle Aged , Polymerase Chain Reaction/methods
17.
Ann Intern Med ; 175(1): 95-100, 2022 01.
Article in English | MEDLINE | ID: mdl-34781719

ABSTRACT

BACKGROUND: A sterilizing cure of HIV-1 infection has been reported in 2 persons living with HIV-1 who underwent allogeneic hematopoietic stem cell transplantations from donors who were homozygous for the CCR5Δ32 gene polymorphism. However, this has been considered elusive during natural infection. OBJECTIVE: To evaluate persistent HIV-1 reservoir cells in an elite controller with undetectable HIV-1 viremia for more than 8 years in the absence of antiretroviral therapy. DESIGN: Detailed investigation of virologic and immunologic characteristics. SETTING: Tertiary care centers in Buenos Aires, Argentina, and Boston, Massachusetts. PATIENT: A patient with HIV-1 infection and durable drug-free suppression of HIV-1 replication. MEASUREMENTS: Analysis of genome-intact and replication-competent HIV-1 using near-full-length individual proviral sequencing and viral outgrowth assays, respectively; analysis of HIV-1 plasma RNA by ultrasensitive HIV-1 viral load testing. RESULTS: No genome-intact HIV-1 proviruses were detected in analysis of a total of 1.188 billion peripheral blood mononuclear cells and 503 million mononuclear cells from placental tissues. Seven defective proviruses, some of them derived from clonally expanded cells, were detected. A viral outgrowth assay failed to retrieve replication-competent HIV-1 from 150 million resting CD4+ T cells. No HIV-1 RNA was detected in 4.5 mL of plasma. LIMITATIONS: Absence of evidence for intact HIV-1 proviruses in large numbers of cells is not evidence of absence of intact HIV-1 proviruses. A sterilizing cure of HIV-1 can never be empirically proved. CONCLUSION: Genome-intact and replication-competent HIV-1 were not detected in an elite controller despite analysis of massive numbers of cells from blood and tissues, suggesting that this patient may have naturally achieved a sterilizing cure of HIV-1 infection. These observations raise the possibility that a sterilizing cure may be an extremely rare but possible outcome of HIV-1 infection. PRIMARY FUNDING SOURCE: National Institutes of Health and Bill & Melinda Gates Foundation.


Subject(s)
HIV Infections/genetics , HIV Infections/immunology , HIV-1/genetics , Receptors, CCR5/genetics , Adult , Argentina , CD4-Positive T-Lymphocytes/immunology , Female , Genotype , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Massachusetts , Pregnancy , Pregnancy Outcome , Proviruses/genetics , Proviruses/immunology , Viral Load , Viremia/virology , Virus Replication/immunology
18.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33239444

ABSTRACT

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/therapy , HIV-1/immunology , Virus Replication/immunology , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Blood Transfusion, Autologous/methods , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Combined Modality Therapy/methods , Female , HIV Antibodies/blood , HIV Antibodies/isolation & purification , HIV Antibodies/therapeutic use , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin G/therapeutic use , Leukapheresis , Male , Middle Aged , Primary Cell Culture , Virus Latency/drug effects , Virus Latency/immunology , Virus Replication/drug effects , env Gene Products, Human Immunodeficiency Virus/immunology
19.
Proc Natl Acad Sci U S A ; 117(27): 15763-15771, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571938

ABSTRACT

HIV-1 latency is a major barrier to cure. Identification of small molecules that destabilize latency and allow immune clearance of infected cells could lead to treatment-free remission. In vitro models of HIV-1 latency involving cell lines or primary cells have been developed for characterization of HIV-1 latency and high-throughput screening for latency-reversing agents (LRAs). We have shown that the majority of LRAs identified to date are relatively ineffective in cells from infected individuals despite activity in model systems. We show here that, for diverse LRAs, latency reversal observed in model systems involves a heat shock factor 1 (HSF1)-mediated stress pathway. Small-molecule inhibition of HSF1 attenuated HIV-1 latency reversal by histone deactylase inhibitors, protein kinase C agonists, and proteasome inhibitors without interfering with the known mechanism of action of these LRAs. However, latency reversal by second mitochondria-derived activator of caspase (SMAC) mimetics was not affected by inhibition of HSF1. In cells from infected individuals, inhibition of HSF1 attenuated latency reversal by phorbol ester+ionomycin but not by anti-CD3+anti-CD28. HSF1 promotes elongation of HIV-1 RNA by recruiting P-TEFb to the HIV-1 long terminal repeat (LTR), and we show that inhibition of HSF1 attenuates the formation of elongated HIV-1 transcripts. We demonstrate that in vitro models of latency have higher levels of the P-TEFb subunit cyclin T1 than primary cells, which may explain why many LRAs are functional in model systems but relatively ineffective in primary cells. Together, these studies provide insights into why particular LRA combinations are effective in reversing latency in cells from infected individuals.


Subject(s)
HIV Infections/genetics , HIV-1/genetics , Heat Shock Transcription Factors/genetics , Virus Latency/genetics , Anti-HIV Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Cyclin T/genetics , HIV Infections/virology , HIV-1/pathogenicity , Heat Shock Transcription Factors/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Humans , Mitochondrial Proteins/genetics , Positive Transcriptional Elongation Factor B/genetics , Protein Kinase C/genetics , RNA, Viral/drug effects , RNA, Viral/genetics , Small Molecule Libraries/pharmacology , Terminal Repeat Sequences/genetics , Virus Activation/genetics
20.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361426

ABSTRACT

The HIV proviral reservoir is the major barrier to cure. The predominantly replication-defective proviral landscape makes the measurement of virus that is likely to cause rebound upon antiretroviral therapy (ART)-cessation challenging. To address this issue, novel assays to measure intact HIV proviruses have been developed. The intact proviral DNA assay (IPDA) is a high-throughput assay that uses two probes to exclude the majority of defective proviruses and determine the frequency of intact proviruses, albeit without sequence confirmation. Quadruplex PCR with four probes (Q4PCR) is a lower-throughput assay that uses limiting dilution long-distance PCR amplification followed by quantitative PCR (qPCR) and near-full-length genome sequencing (nFGS) to estimate the frequency of sequence-confirmed intact proviruses and provide insight into their clonal composition. To explore the advantages and limitations of these assays, we compared IPDA and Q4PCR measurements from 39 ART-suppressed people living with HIV. We found that IPDA and Q4PCR measurements correlated with one another, but frequencies of intact proviral DNA differed by approximately 19-fold. This difference may be in part due to inefficiencies in long-distance PCR amplification of proviruses in Q4PCR, leading to underestimates of intact proviral frequencies. In addition, nFGS analysis within Q4PCR explained that some of this difference is explained by proviruses that are classified as intact by IPDA but carry defects elsewhere in the genome. Taken together, this head-to-head comparison of novel intact proviral DNA assays provides important context for their interpretation in studies to deplete the HIV reservoir and shows that together the assays bracket true reservoir size.IMPORTANCE The intact proviral DNA assay (IPDA) and quadruplex PCR (Q4PCR) represent major advances in accurately quantifying and characterizing the replication-competent HIV reservoir. This study compares the two novel approaches for measuring intact HIV proviral DNA in samples from 39 antiretroviral therapy (ART)-suppressed people living with HIV, thereby informing ongoing efforts to deplete the HIV reservoir in cure-related trials.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Molecular Diagnostic Techniques/methods , Proviruses/genetics , Anti-Retroviral Agents/therapeutic use , Base Sequence , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , Genes, env/genetics , Genome, Viral/genetics , HIV Infections/drug therapy , HIV-1/isolation & purification , HIV-1/physiology , Polymerase Chain Reaction , Polymorphism, Genetic , Proviruses/isolation & purification , Proviruses/physiology , Viral Load , Viral Packaging Sequence/genetics , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL