Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Biotechnol Bioeng ; 120(10): 2890-2906, 2023 10.
Article in English | MEDLINE | ID: mdl-37376851

ABSTRACT

Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.


Subject(s)
Biotechnology , COVID-19 , Humans , Biotechnology/methods , Nicotiana/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Protein Biosynthesis , Antibodies, Monoclonal/metabolism , Disulfides/metabolism , Cell-Free System/metabolism
2.
Malar J ; 20(1): 37, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33430886

ABSTRACT

BACKGROUND: Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. MATERIAL AND METHODS: Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1-3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. RESULTS: The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. CONCLUSION: We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Immunity, Humoral , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Antibodies, Monoclonal/immunology , Antigens, Protozoan/metabolism , Humans , Malaria Vaccines/chemistry , Membrane Proteins/metabolism , Protozoan Proteins/metabolism
3.
Clin Exp Allergy ; 49(2): 239-251, 2019 02.
Article in English | MEDLINE | ID: mdl-30267550

ABSTRACT

BACKGROUND: The precise mapping of multiple antibody epitopes recognized by patients' sera allows a more detailed and differentiated understanding of immunological diseases. It may lead to the development of novel therapies and diagnostic tools. OBJECTIVE: Mapping soy bean specific epitopes relevant for soy bean allergy patients and persons sensitized to soy bean, and analysis of their IgE/IgG binding spectrum. METHODS: Identification of epitopes using sera, applying an optimized peptide phage display library followed by next-generation sequencing, specially designed in silico data analysis and subsequent peptide microarray analysis. RESULTS: We were able to identify more than 400 potential epitope motifs in soy bean proteins. More than 60% of them have not yet been described as potential epitopes. Eighty-three peptides, representing the 42 most frequently found epitope candidates, were validated by microarray analysis using 50 sera from people who have been tested positive in skin prick test (SPT). Of these peptides, 56 were bound by antibodies, 55 by serum IgE, 43 by serum IgG and 30 by both. Person-specific epitope patterns were found for each individual and protein. CONCLUSIONS: For individuals with clinical symptoms, epitope resolved analyses reveal a high prevalence of IgE binding to a few soy bean specific epitopes. Evaluation of individual immune profiles of patients with soy bean sensitization allows the identification of peptides that do facilitate studying individual IgE/IgG epitope binding patterns. This enables discrimination of sensitization from disease, such assay test has the potential to replace SPT assays.


Subject(s)
Antigens, Plant/immunology , Epitope Mapping , Food Hypersensitivity/immunology , Glycine max/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Peptide Library , Soybean Proteins/immunology , Adult , Aged , Female , Food Hypersensitivity/pathology , Humans , Male , Middle Aged , Skin Tests
4.
Protein Expr Purif ; 152: 122-130, 2018 12.
Article in English | MEDLINE | ID: mdl-30059744

ABSTRACT

Plants as a platform for recombinant protein expression are now economically comparable to well-established systems, such as microbes and mammalian cells, thanks to advantages such as scalability and product safety. However, downstream processing accounts for the majority of the final product costs because plant extracts contain large quantities of host cell proteins (HCPs) that must be removed using elaborate purification strategies. Heat precipitation in planta (blanching) can remove ∼80% of HCPs and thus simplify further purification steps, but this is only possible if the target protein is thermostable. Here we describe a combination of blanching and chromatography to purify the thermostable transmission-blocking malaria vaccine candidate FQS, which was transiently expressed in Nicotiana benthamiana leaves. If the blanching temperature exceeded a critical threshold of ∼75 °C, FQS was no longer recognized by the malaria transmission-blocking monoclonal antibody 4B7. A design-of-experiments approach revealed that reducing the blanching temperature from 80 °C to 70 °C restored antibody binding while still precipitating most HCPs. We also found that blanching inhibited the degradation of FQS in plant extracts, probably due to the thermal inactivation of proteases. We screened hydrophobic interaction chromatography materials using miniature columns and a liquid-handling station. Octyl Sepharose achieved the highest FQS purity during the primary capture step and led to a final purity of ∼72% with 60% recovery via step elution. We found that 30-75% FQS was lost during ultrafiltration/diafiltration, giving a final yield of 9 mg kg-1 plant material after purification based on an initial yield of ∼49 mg kg-1 biomass after blanching.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Protozoan/chemistry , Malaria Vaccines/isolation & purification , Nicotiana/genetics , Plant Proteins/isolation & purification , Protozoan Proteins/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan/metabolism , Chromatography, Affinity/methods , Cloning, Molecular , Factor Analysis, Statistical , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Malaria Vaccines/biosynthesis , Malaria Vaccines/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/chemistry , Plants, Genetically Modified , Protein Binding , Protein Denaturation , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sepharose/analogs & derivatives , Nicotiana/chemistry , Nicotiana/metabolism , Ultrafiltration/methods
5.
Malar J ; 15(1): 279, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27188716

ABSTRACT

BACKGROUND: The high incidence and mortality rate of malaria remains a serious burden for many developing countries, and a vaccine that induces durable and highly effective immune responses is, therefore, desirable. An earlier analysis of the stage-specific in vitro efficacy of a malaria vaccine candidate cocktail (VAMAX) considered the general properties of complex multi-component, multi-stage combination vaccines in rabbit immunization experiments using a hyper-immunization protocol featuring six consecutive boosts and a strong, lipopolysaccharide-based adjuvant. This follow-up study investigates the effect of antigen dose on the in vitro efficacy of the malaria vaccine cocktail using a conventional vaccination scheme (one prime and two boosts) and a human-compatible adjuvant (Alhydrogel(®)). RESULTS: IgG purified from rabbits immunized with 0.1, 1, 10 or 50 µg doses of the VAMAX vaccine candidate cocktail was analysed for total IgG and antigen-cocktail-specific titers. An increase in cocktail-specific titers was observed between 0.1 and 1 µg and between 10 and 50 µg, whereas no significant difference in titers was observed between 1 and 10 µg. Antigen component-specific antibody titers and stage-specific in vitro efficacy assays were performed with pooled IgG from animals immunized with 1 and 50 µg of the VAMAX cocktail. Here, the component-specific antibody levels showed clear dose dependency whereas the determined stage-specific in vitro IC50 values (as a correlate of efficacy) were only dependent on the titer amounts of stage-specific antibodies. CONCLUSIONS: The stage-specific in vitro efficacy of the VAMAX cocktail strongly correlates with the corresponding antigen-specific titers, which for their part depend on the antigen dose, but there is no indication that the dose has an effect on the in vitro efficacy of the induced antibodies. A comparison of these results with those obtained in the previous hyper-immunization study (where higher levels of antigen-specific IgG were observed) suggests that there is a significant need to induce an immune response matching efficacy requirements, especially for a PfAMA1-based blood stage vaccine, by using higher doses, better adjuvants and/or better formulations.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan/blood , Immunization Schedule , Malaria Vaccines/immunology , Animals , Dose-Response Relationship, Immunologic , Follow-Up Studies , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Rabbits
6.
BMC Biotechnol ; 15: 108, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625934

ABSTRACT

BACKGROUND: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. RESULTS: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastid-targeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 µg/g recombinant protein per fresh leaf material for ER-retarded and16.2 µg/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. CONCLUSIONS: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation.


Subject(s)
Biotechnology/methods , Malaria Vaccines/genetics , Malaria/prevention & control , Membrane Proteins/biosynthesis , Nicotiana/metabolism , Plasmodium falciparum/genetics , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique, Direct , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Membrane Proteins/genetics , Rabbits
7.
Plant Biotechnol J ; 13(8): 1094-105, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26214282

ABSTRACT

The EU Sixth Framework Programme Integrated Project 'Pharma-Planta' developed an approved manufacturing process for recombinant plant-made pharmaceutical proteins (PMPs) using the human HIV-neutralizing monoclonal antibody 2G12 as a case study. In contrast to the well-established Chinese hamster ovary platform, which has been used for the production of therapeutic antibodies for nearly 30 years, only draft regulations were initially available covering the production of recombinant proteins in transgenic tobacco plants. Whereas recombinant proteins produced in animal cells are secreted into the culture medium during fermentation in bioreactors, intact plants grown under nonsterile conditions in a glasshouse environment provide various 'plant-specific' regulatory and technical challenges for the development of a process suitable for the acquisition of a manufacturing licence for clinical phase I trials. During upstream process development, several generic steps were addressed (e.g. plant transformation and screening, seed bank generation, genetic stability, host plant uniformity) as well as product-specific aspects (e.g. product quantity). This report summarizes the efforts undertaken to analyse and define the procedures for the GMP/GACP-compliant upstream production of 2G12 in transgenic tobacco plants from gene to harvest, including the design of expression constructs, plant transformation, the generation of production lines, master and working seed banks and the detailed investigation of cultivation and harvesting parameters and their impact on biomass, product yield and intra/interbatch variability. The resulting procedures were successfully translated into a prototypic manufacturing process that has been approved by the German competent authority.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , Genetic Engineering/methods , Nicotiana/genetics , Animals , Biomass , Broadly Neutralizing Antibodies , CHO Cells , Cricetinae , Cricetulus , Genetic Vectors/metabolism , HIV Antibodies , Humans , Luminescent Proteins/metabolism , Molecular Sequence Data , Plant Leaves/metabolism , Plants, Genetically Modified
8.
Plant Biotechnol J ; 13(2): 222-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25236489

ABSTRACT

One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 µg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC50 values of ~35 µg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.


Subject(s)
Antigens, Protozoan/metabolism , Malaria Vaccines/immunology , Membrane Proteins/metabolism , Nicotiana/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Animals , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Glycosylation , Immune Sera , Immunization , Immunoglobulin G/metabolism , Merozoites/metabolism , Models, Molecular , Parasites/metabolism , Pichia , Plants, Genetically Modified , Polysaccharides/metabolism , Rabbits , Surface Plasmon Resonance
9.
Biotechnol Bioeng ; 112(5): 867-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25421615

ABSTRACT

Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 µg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 µg/mL of firefly luciferase using plasmid templates, and up to 180 µg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 µg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 µg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins.


Subject(s)
Cell-Free System/metabolism , Nicotiana/cytology , Nicotiana/genetics , Protein Biosynthesis , Recombinant Proteins/genetics , Transcription, Genetic , Animals , Antibodies/genetics , Antibodies/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotechnology/methods , Cells, Cultured , Glycosylation , Humans , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Recombinant Proteins/metabolism , Nicotiana/metabolism
10.
Biotechnol Bioeng ; 112(4): 659-67, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25335451

ABSTRACT

We demonstrated the successful optimization of a recombinant multi-subunit malaria vaccine candidate protein for production in the methylotrophic yeast Pichia pastoris by the identification and subsequent removal of two protease cleavage sites. After observing protein degradation in the culture supernatant of a fed-batch fermentation, the predominant proteolytic fragment of the secreted recombinant protein was analyzed by mass spectrometry. The MS data indicated the cleavage of an amino acid sequence matching the yeast KEX2-protease consensus motif EKRE. The cleavage in this region was completely abolished by the deletion of the EKRE motif in a modified variant. This modified variant was produced, purified, and used for immunization of rabbits, inducing high antigen specific antibody titers (2 × 10(6) ). Total IgG from rabbit immune sera recognized different stages of Plasmodium falciparum parasites in immunofluorescence assays, indicating native folding of the vaccine candidate. However, the modified variant was still degraded, albeit into different fragments. Further analysis by mass spectrometry and N-terminal sequencing revealed a second cleavage site downstream of the motif PEVK. We therefore removed a 17-amino-acid stretch including the PEVK motif, resulting in the subsequent production of the full-length recombinant vaccine candidate protein without significant degradation, with a yield of 53 mg per liter culture volume. We clearly demonstrate that the proteolytic degradation of recombinant proteins by endogenous P. pastoris proteases can be prevented by the identification and removal of such cleavage sites. This strategy is particularly relevant for the production of recombinant subunit vaccines, where product yield and stability play a more important role than for the production of a stringently-defined native sequence which is necessary for most therapeutic molecules.


Subject(s)
Malaria Vaccines/biosynthesis , Malaria Vaccines/isolation & purification , Peptide Hydrolases/metabolism , Animals , Antibodies, Protozoan/blood , Binding Sites , Biotechnology/methods , Fluorescent Antibody Technique, Direct , Immunization/methods , Immunoglobulin G/blood , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Mass Spectrometry , Mice , Mutant Proteins/biosynthesis , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/isolation & purification , Pichia/genetics , Pichia/metabolism , Plasmodium falciparum/immunology , Proteolysis , Rabbits , Sequence Deletion , Technology, Pharmaceutical/methods , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/genetics , Vaccines, Synthetic/isolation & purification
11.
Biotechnol Bioeng ; 112(7): 1297-305, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25615702

ABSTRACT

Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 µg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.


Subject(s)
Antigens, Protozoan/isolation & purification , Fractional Precipitation , Malaria Vaccines/isolation & purification , Nicotiana/metabolism , Plants, Genetically Modified/metabolism , Protozoan Proteins/isolation & purification , Recombinant Fusion Proteins/isolation & purification , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Hot Temperature , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria Vaccines/metabolism , Mice , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Nicotiana/genetics , Vaccination/methods
12.
Malar J ; 14: 50, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25651860

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS: Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS: The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS: As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunoglobulin Variable Region/immunology , Nicotiana/metabolism , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Protozoan/genetics , Antibodies, Protozoan/isolation & purification , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/isolation & purification , Mice, Inbred BALB C , Microscopy, Fluorescence , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Surface Plasmon Resonance , Nicotiana/genetics
13.
Malar J ; 14: 276, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26174014

ABSTRACT

BACKGROUND: Semi-immunity against the malaria parasite is defined by a protection against clinical episodes of malaria and is partially mediated by a repertoire of inhibitory antibodies directed against the blood stage of Plasmodium falciparum, in particular against surface proteins of merozoites, the invasive form of the parasite. Such antibodies may be used for preventive or therapeutic treatment of P. falciparum malaria. Here, the isolation and characterization of novel human monoclonal antibodies (humAbs) for such applications is described. METHODS: B lymphocytes had been selected by flow cytometry for specificity against merozoite surface proteins, including the merozoite surface protein 10 (MSP10). After Epstein-Barr virus (EBV) transformation and identification of promising resulting lymphoblastoid cell lines (LCLs), human immunoglobulin heavy and light chain variable regions (Vh or Vl regions) were secured, cloned into plant expression vectors and transiently produced in Nicotiana benthamiana in the context of human full-size IgG1:κ. The specificity and the affinity of the generated antibodies were assessed by ELISA, dotblot and surface plasmon resonance (SPR) spectroscopy. The growth inhibitory activity was evaluated based on growth inhibition assays (GIAs) using the parasite strain 3D7A. RESULTS: Supernatants from two LCLs, 5E8 and 5F6, showed reactivity against the second (5E8) or first (5F6) epidermal growth factor (EGF)-like domain of MSP10. The isolated V regions were recombinantly expressed in their natural pairing as well as in combination with each other. The resulting recombinant humAbs showed affinities of 9.27 × 10(-7) M [humAb10.1 (H5F6:κ5E8)], 5.46 × 10(-9) M [humAb10.2 (H5F6:κ5F6)] and 4.34 × 10(-9) M [humAb10.3 (H5E8:κ5E8)]. In GIAs, these antibodies exhibited EC50 values of 4.1 mg/ml [95% confidence interval (CI) 2.6-6.6 mg/ml], 6.9 mg/ml (CI 5.5-8.6 mg/ml) and 9.5 mg/ml (CI 5.5-16.4 mg/ml), respectively. CONCLUSION: This report describes a platform for the isolation of human antibodies from semi-immune blood donors by EBV transformation and their subsequent characterization after transient expression in plants. To our knowledge, the presented antibodies are the first humAbs directed against P. falciparum MSP10 to be described. They recognize the EGF-like folds of MSP10 and bind these with high affinity. Moreover, these antibodies inhibit P. falciparum 3D7A growth in vitro.


Subject(s)
Antibodies, Monoclonal , Antigens, Protozoan/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Recombinant Proteins , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Humans , Plasmodium falciparum/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
14.
BMC Biotechnol ; 14: 37, 2014 May 03.
Article in English | MEDLINE | ID: mdl-24886601

ABSTRACT

BACKGROUND: Cell-free protein synthesis is a rapid and efficient method for the production of recombinant proteins. Usage of prokaryotic cell-free extracts often leads to non-functional proteins. Eukaryotic counterparts such as wheat germ extract (WGE) and rabbit reticulocyte lysate (RLL) may improve solubility and promote the correct folding of eukaryotic multi-domain proteins that are difficult to express in bacteria. However, the preparation of WGEs is complex and time-consuming, whereas RLLs suffer from low yields. Here we report the development of a novel cell-free system based on tobacco Bright Yellow 2 (BY-2) cells harvested in the exponential growth phase. RESULTS: The highly-productive BY-2 lysate (BYL) can be prepared quickly within 4-5 h, compared to 4-5 d for WGE. The efficiency of the BYL was tested using three model proteins: enhanced yellow fluorescent protein (eYFP) and two versions of luciferase. The added mRNA was optimized by testing different 5' and 3' untranslated regions (UTRs). The protein yield in batch and dialysis reactions using BYL was much higher than that of a commercial Promega WGE preparation, achieving a maximum yield of 80 µg/mL of eYFP and 100 µg/mL of luciferase, compared to only 45 µg/mL of eYFP and 35 µg/mL of luciferase in WGEs. In dialysis reactions, the BYL yielded about 400 µg/mL eYFP, representing up to 50% more of the target protein than the Promega WGE, and equivalent to the amount using 5Prime WGE system. CONCLUSIONS: Due to the high yield and the short preparation time the BYL represents a remarkable improvement over current eukaryotic cell-free systems.


Subject(s)
Nicotiana/cytology , Protein Biosynthesis , 3' Untranslated Regions , 5' Untranslated Regions , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell-Free System , Dialysis , Germ Cells/metabolism , Luciferases/genetics , Luciferases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protoplasts/cytology , Protoplasts/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Triticum/cytology
15.
J Immunoassay Immunochem ; 35(3): 322-34, 2014.
Article in English | MEDLINE | ID: mdl-24350651

ABSTRACT

Non human antibodies administered to human patients often generate anti-antibody responses, leading in extreme cases to anaphylactic shock. Completely human antibodies are therefore favored over their murine, chimeric and humanized counterparts. However, the accurate evaluation of human antibodies on human tissue samples cannot be achieved using indirect immunohistochemical methods because of endogenous immunoglobulins that are co-detected by the secondary antibodies. Direct detection is often used instead, but this lacks the signal amplification conferred by the secondary antibody and is therefore less sensitive. We developed a simple fluorescence-based indirect immunohistochemical method that allows human primary antibodies bound specifically to their target antigens in human tissue samples to be detected clearly and without interfering background staining. This approach involves a biotinylated human primary antibody (H10(Biotin)) and Cy3-conjugated streptavidin (Strep(Cy3)). We tested the protocol using a human carcinoembryonic antigen (CEA) specific IgG1 (H10). We identified an exposure time threshold that allowed the elimination of low Strep(Cy3) background staining, yet achieved sufficient signal amplification to make our approach four times more sensitive than comparable direct immunohistochemical procedures. The principle of this indirect immunohistochemical assay should be transferable to other species allowing the specific and sensitive detection of any primary antibody on homologous tissues.


Subject(s)
Antibodies, Monoclonal , Carcinoembryonic Antigen/analysis , Carcinoma/diagnosis , Colonic Neoplasms/diagnosis , Fluorescent Antibody Technique, Indirect/methods , Immunoglobulin G , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Biotin/chemistry , Biotinylation , CHO Cells , Carbocyanines , Carcinoma/immunology , Carcinoma/pathology , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Cricetulus , HEK293 Cells , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Mice , Sensitivity and Specificity , Staining and Labeling/methods , Streptavidin/chemistry
16.
Methods Mol Biol ; 2480: 147-157, 2022.
Article in English | MEDLINE | ID: mdl-35616863

ABSTRACT

Plants are increasingly viewed as suitable expression hosts for the production of recombinant proteins, especially when oxidative folding and/or posttranslational modification is essential for protein stability and functionality. In contrast to traditional platforms such as yeast and mammalian cells, where the product is secreted into the culture medium, recombinant proteins expressed in plants are usually retained within the cells so additional effort is required during extraction and purification. Various extraction processes are used to release soluble proteins from plant tissues, followed by clarification to remove fibers and particulates before the target protein is purified. Fermentation media generally contain few proteins, making it easier to recover a secreted product, whereas the green juice extracted from plants usually contains a large number of host proteins that interfere with target isolation and purification. In this chapter, we describe the use of heat precipitation to remove a large portion of the host cell proteins, thus improving the efficiency of subsequent purification steps and the quality of the purified recombinant protein.


Subject(s)
Hot Temperature , Plants , Recombinant Proteins/genetics
17.
Methods Mol Biol ; 2480: 1-13, 2022.
Article in English | MEDLINE | ID: mdl-35616854

ABSTRACT

The first recombinant proteins were produced in microbes and animal cells cultivated in bioreactors. These systems have become the standard for industrial-scale recombinant protein manufacturing. Later, the production of recombinant proteins was demonstrated in whole plants, which differ morphologically from cell-based systems and require completely different cultivation conditions. Over time, additional plant-based production platforms were established, including hairy roots and cell suspension cultures, which are more similar to conventional cell-based systems in terms of morphology, procedures, and equipment requirements. In this brief overview of the field, we explain why plant-based systems are becoming increasingly attractive for the production of valuable proteins with scientific and commercial applications, but also highlight the challenges that these systems must overcome to achieve more widespread industrial utilization. We discuss various laboratory protocols and approaches for the production of recombinant proteins in plants, as well as strategies to optimize yields, and the regulatory and legal framework.


Subject(s)
Bioreactors , Cell Culture Techniques , Animals , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/metabolism , Suspensions
18.
Methods Mol Biol ; 2480: 89-102, 2022.
Article in English | MEDLINE | ID: mdl-35616859

ABSTRACT

The agroinfiltration of plant tissue is a robust method that allows the rapid and transient expression of recombinant proteins. Using wild-type plants as biomass, agroinfiltration exploits the ability of plants to synthesize even complex multimeric proteins that require oxidative folding and/or post-translational modifications, while avoiding the expensive and time-consuming creation of stably transformed plant lines. Here we describe a generic method for the transient expression of recombinant proteins in Nicotiana benthamiana at the small to medium laboratory scale, including appropriate binary vectors, the design and cloning of expression constructs, the transformation, selection, and cultivation of recombinant Agrobacterium tumefaciens, the infiltration of plants using a syringe or vacuum device, and finally the extraction of recombinant proteins from plant tissues.


Subject(s)
Agrobacterium tumefaciens , Nicotiana , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Recombinant Proteins/metabolism , Nicotiana/metabolism
19.
Front Bioeng Biotechnol ; 10: 926239, 2022.
Article in English | MEDLINE | ID: mdl-36131725

ABSTRACT

Recombinant expression using Agrobacterium-mediated transient transformation (ATT) of plants has developed into a robust and versatile method to rapidly produce proteins. The capability of plants to efficiently synthesize even homo- and hetero-multimeric complex folded proteins featuring disulfide bonds and other post-translational modifications such as N-linked glycosylation makes them superior to most of the established microbial, especially prokaryotic expression hosts. Compared to production in mammalian cell cultures, ATT requires lower skills, simple technical equipment and cheaper media components. Taken together these features make the method optimally suited for R&D applications involving the development and engineering of recombinant proteins for various purposes ranging from vaccine candidates, therapeutic proteins, towards enzymes for different pharmaceutical and technical applications. Despite these advantages the technology is currently not being used outside the community of plant research. The design and realization of a kit containing all the information, instructions and ideally also the material required to perform recombinant protein production using ATT in an educational or commercial context was one of the objectives of the EU-funded Horizon 2020 project Pharma-Factory. While it is pretty straightforward to assemble a comprehensive instruction manual describing the procedure, the clarification of regulatory and legal aspects associated with the provision, dissemination and use of the different materials and organisms required to perform ATT is a complex matter. In this article, we describe the initial concept of an ATT kit for educational as well as research and development (R&D) purposes and the specific regulatory and legal implications associated with the various kit components. We cover aspects including intellectual property rights, freedom-to-operate (FTO), safety regulations for distributing genetically-modified organisms (GMOs), as well as export and import regulations. Our analysis reveals that important components of the ATT kit are freely available for research purposes but not or only with considerable effort for commercial use and distribution. We conclude with a number of considerations and requirements that need to be met in order to successfully disseminate such a kit in the future.

20.
bioRxiv ; 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36380753

ABSTRACT

Eukaryotic cell-free protein synthesis (CFPS) systems have the potential to simplify and speed up the expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and the inability to scale such systems have so far prevented their widespread adoption in protein research and manufacturing. Here, we present a detailed demonstration for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in under 48 hours, complete with native disulfide bonds and N-glycosylation. An optimised version of the technology is commercialised as 'ALiCE ® ', engineered for high yields of up to 3 mg/mL. Recent advances in the scaling of BYL production methodologies have allowed scaling of the CFPS reaction. We show simple, linear scale-up of batch mode reporter proten expression from a 100 µL microtiter plate format to 10 mL and 100 mL volumes in standard Erlenmeyer flasks, culminating in preliminary data from 1 L reactions in a CELL-tainer® CT20 rocking motion bioreactor. As such, these works represent the first published example of a eukaryotic CFPS reaction scaled past the 10 mL level by several orders of magnitude. We show the ability of BYL to produce the simple reporter protein eYFP and large, multimeric virus-like particles directly in the cytosolic fraction. Complex proteins are processed using the native microsomes of BYL and functional expression of multiple classes of complex, difficult-to-express proteins is demonstrated, specifically: a dimeric, glycoprotein enzyme, glucose oxidase; the monoclonal antibody adalimumab; the SARS-Cov-2 receptor-binding domain; human epidermal growth factor; and a G protein-coupled receptor membrane protein, cannabinoid receptor type 2. Functional binding and activity are shown using a combination of surface plasmon resonance techniques, a serology-based ELISA method and a G protein activation assay. Finally, in-depth post-translational modification (PTM) characterisation of purified proteins through disulfide bond and N-glycan analysis is also revealed - previously difficult in the eukaryotic CFPS space due to limitations in reaction volumes and yields. Taken together, BYL provides a real opportunity for screening of complex proteins at the microscale with subsequent amplification to manufacturing-ready levels using off-the-shelf protocols. This end-to-end platform suggests the potential to significantly reduce cost and the time-to-market for high value proteins and biologics.

SELECTION OF CITATIONS
SEARCH DETAIL