Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Proc Natl Acad Sci U S A ; 121(35): e2408889121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39167600

ABSTRACT

WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.


Subject(s)
Hematologic Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
2.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574664

ABSTRACT

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neoplasms , WD40 Repeats , Animals , Humans , Mice , Chromatin , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Models, Animal , Neoplasms/drug therapy , Cell Line, Tumor
3.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33771585

ABSTRACT

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Ethers/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Aniline Compounds/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ethers/chemistry , Humans , L-Lactate Dehydrogenase/chemistry
4.
J Med Chem ; 67(16): 14370-14393, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39102508

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound 26, that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments. Evaluation of 26 as a single agent in Mcl-1 sensitive hematological and solid tumor xenograft models resulted in regressions. Co-treatment of Mcl-1-sensitive and Mcl-1 insensitive lung cancer derived xenografts with 26 and docetaxel or topotecan, respectively, resulted in an enhanced tumor response. These findings support the premise that pro-apoptotic priming of tumor cells by other therapies in combination with Mcl-1 inhibition may significantly expand the subset of cancers in which Mcl-1 inhibitors may prove beneficial.


Subject(s)
Antineoplastic Agents , Myeloid Cell Leukemia Sequence 1 Protein , Xenograft Model Antitumor Assays , Animals , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Dogs , Structure-Activity Relationship , Female , Drug Discovery , Taxoids/pharmacology , Taxoids/pharmacokinetics , Taxoids/therapeutic use , Taxoids/chemistry , Docetaxel/pharmacology , Docetaxel/therapeutic use , Docetaxel/pharmacokinetics , Docetaxel/chemistry
5.
Cancer Discov ; 13(8): 1884-1903, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37262072

ABSTRACT

A metabolic hallmark of cancer identified by Warburg is the increased consumption of glucose and secretion of lactate, even in the presence of oxygen. Although many tumors exhibit increased glycolytic activity, most forms of cancer rely on mitochondrial respiration for tumor growth. We report here that Hürthle cell carcinoma of the thyroid (HTC) models harboring mitochondrial DNA-encoded defects in complex I of the mitochondrial electron transport chain exhibit impaired respiration and alterations in glucose metabolism. CRISPR-Cas9 pooled screening identified glycolytic enzymes as selectively essential in complex I-mutant HTC cells. We demonstrate in cultured cells and a patient-derived xenograft model that small-molecule inhibitors of lactate dehydrogenase selectively induce an ATP crisis and cell death in HTC. This work demonstrates that complex I loss exposes fermentation as a therapeutic target in HTC and has implications for other tumors bearing mutations that irreversibly damage mitochondrial respiration. SIGNIFICANCE: HTC is enriched in somatic mtDNA mutations predicted to affect complex I of the electron transport chain (ETC). We demonstrate that these mutations impair respiration and induce a therapeutically tractable reliance on aerobic fermentation for cell survival. This work provides a rationale for targeting fermentation in cancers harboring irreversible genetically encoded ETC defects. See related article by Gopal et al., p. 1904. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Adenocarcinoma , Adenoma, Oxyphilic , Carcinoma , Thyroid Neoplasms , Humans , Fermentation , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Adenoma, Oxyphilic/genetics , DNA, Mitochondrial/genetics
6.
J Med Chem ; 66(24): 16783-16806, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38085679

ABSTRACT

The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.


Subject(s)
Antineoplastic Agents , WD40 Repeats , Animals , Drug Discovery , Antineoplastic Agents/pharmacology
7.
ACS Med Chem Lett ; 14(7): 977-985, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465292

ABSTRACT

The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.

8.
ChemMedChem ; 17(11): e202200030, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35451199

ABSTRACT

Human p97 is a potential drug target in oncology. Mutation-driven drug resistance is an obstacle to the long-term efficacy of targeted therapy. We found that the ATPase activity for one of the CB-5083-resistant p97 mutants was reduced, which also attenuated the degradation of K48 ubiquitinated proteins in cells. To understand how p97 mutant cells with significantly reduced ATPase activity can still grow, we discovered reduced levels of CHOP and NF-κB activation in the p97 mutant cells and these cellular changes can potentially protect HCT116 cells from death due to lowered p97 activity. In addition, the NF-kB inhibitor Sulforaphane reduces proliferation of CB-5083 resistant cells and acts synergistically with CB-5083 to block proliferation of the parental HCT116 cells. The combination of Sulforaphane and CB-5083 may be a useful treatment strategy to combat CB-5083 resistance.


Subject(s)
Adenosine Triphosphatases , Indoles , HCT116 Cells , Humans , Indoles/pharmacology , Isothiocyanates , Pyrimidines , Sulfoxides , Valosin Containing Protein/metabolism
9.
J Med Chem ; 65(8): 6287-6312, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35436124

ABSTRACT

WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile. The core of the previous lead remained constant while a focused SAR effort on the three pharmacophore units was combined to generate a new in vivo lead series. Importantly, this new series of compounds has picomolar binding affinity, improved cellular antiproliferative activity and selectivity, and increased kinetic aqueous solubility. They also exhibit a desirable oral pharmacokinetic profile with manageable intravenous clearance and high oral bioavailability. Thus, these new leads are useful probes toward studying the effects of WDR5 inhibition.


Subject(s)
Intracellular Signaling Peptides and Proteins , Humans , WD40 Repeats
10.
Mol Cancer Ther ; 21(10): 1510-1523, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35876604

ABSTRACT

Pet dogs with naturally occurring cancers play an important role in studies of cancer biology and drug development. We assessed tolerability, efficacy, and pharmacokinetic/pharmacodynamic relationships with a first-in-class small molecule inhibitor of valosin-containing protein (VCP/p97), CB-5339, administered to 24 tumor-bearing pet dogs. Tumor types assessed included solid malignancies, lymphomas, and multiple myeloma. Through a stepwise dose and schedule escalation schema, we determined the maximum tolerated dose to be 7.5 mg/kg when administered orally on a 4 days on, 3 days off schedule per week for 3 consecutive weeks. Adverse events were minimal and mainly related to the gastrointestinal system. Pharmacokinetic/pharmacodynamic data suggest a relationship between exposure and modulation of targets related to induction of the unfolded protein response, but not to tolerability of the agent. An efficacy signal was detected in 33% (2/6) of dogs with multiple myeloma, consistent with a mechanism of action relating to induction of proteotoxic stress in a tumor type with abundant protein production. Clinical trials of CB-5339 in humans with acute myelogenous leukemia and multiple myeloma are ongoing.


Subject(s)
Antineoplastic Agents , Lymphoma , Multiple Myeloma , Valosin Containing Protein , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dogs , Enzyme Inhibitors/therapeutic use , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma/veterinary , Maximum Tolerated Dose , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/veterinary , Unfolded Protein Response , Valosin Containing Protein/antagonists & inhibitors
11.
J Med Chem ; 64(8): 4913-4946, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33822623

ABSTRACT

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).


Subject(s)
Enzyme Inhibitors/chemistry , Isocitrate Dehydrogenase/antagonists & inhibitors , Pyridones/chemistry , Animals , Brain/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Half-Life , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Nude , Microsomes, Liver/metabolism , Mutagenesis, Site-Directed , Neoplasms/drug therapy , Neoplasms/pathology , Pyridines/therapeutic use , Pyridones/metabolism , Pyridones/therapeutic use , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
ChemMedChem ; 15(8): 685-694, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32162487

ABSTRACT

A major challenge of targeted cancer therapy is the selection for drug-resistant mutations in tumor cells leading to loss of treatment effectiveness. p97/VCP is central regulator of protein homeostasis and a promising anticancer target because of its vital role in cell growth and survival. One ATP-competitive p97 inhibitor, CB-5083, has entered clinical trials. Selective pressure on HCT116 cells dosed with CB-5083 identified five different resistant mutants. Identification of p97 inhibitors with different mechanisms of action would offer the potential to overcome this class of resistance mutations. Our results demonstrate that two CB-5083 resistant p97 mutants, N660 K and T688 A, were also resistant to several other ATP-competitive p97 inhibitors, whereas inhibition by two allosteric p97 inhibitors NMS-873 and UPCDC-30245 were unaffected by these mutations. We also established a CB-5083 resistant cell line that harbors a new p97 double mutation (D649 A/T688 A). While CB-5083, NMS-873, and UPCDC-30245 all effectively inhibited proliferation of the parental HCT116 cell line, NMS-873 and UPCDC-30245 were 30-fold more potent in inhibiting the CB-5083 resistant D649 A/T688 A double mutant than CB-5083. Our results suggest that allosteric p97 inhibitors are promising alternatives when resistance to ATP-competitive p97 inhibitors arises during anticancer treatment.


Subject(s)
Acetanilides/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Nuclear Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Acetanilides/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , HCT116 Cells , Humans , Indoles/chemistry , Models, Molecular , Molecular Structure , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pyrimidines/chemistry
13.
J Med Chem ; 63(2): 656-675, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31858797

ABSTRACT

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Quinolones/chemical synthesis , Quinolones/pharmacology , WD40 Repeats/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Chromatin/drug effects , Chromatin/genetics , Crystallography, X-Ray , Drug Design , Drug Discovery , Epigenetic Repression/drug effects , Genes, myc/drug effects , Humans , Structure-Activity Relationship
14.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32902275

ABSTRACT

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Mice , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049011

ABSTRACT

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Subject(s)
Drug Therapy, Combination/methods , L-Lactate Dehydrogenase/antagonists & inhibitors , Neoplasms/immunology , Animals , Humans , Mice , Neoplasms/drug therapy
16.
Cancer Res ; 79(19): 5060-5073, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31431459

ABSTRACT

Altered cellular metabolism, including an increased dependence on aerobic glycolysis, is a hallmark of cancer. Despite the fact that this observation was first made nearly a century ago, effective therapeutic targeting of glycolysis in cancer has remained elusive. One potentially promising approach involves targeting the glycolytic enzyme lactate dehydrogenase (LDH), which is overexpressed and plays a critical role in several cancers. Here, we used a novel class of LDH inhibitors to demonstrate, for the first time, that Ewing sarcoma cells are exquisitely sensitive to inhibition of LDH. EWS-FLI1, the oncogenic driver of Ewing sarcoma, regulated LDH A (LDHA) expression. Genetic depletion of LDHA inhibited proliferation of Ewing sarcoma cells and induced apoptosis, phenocopying pharmacologic inhibition of LDH. LDH inhibitors affected Ewing sarcoma cell viability both in vitro and in vivo by reducing glycolysis. Intravenous administration of LDH inhibitors resulted in the greatest intratumoral drug accumulation, inducing tumor cell death and reducing tumor growth. The major dose-limiting toxicity observed was hemolysis, indicating that a narrow therapeutic window exists for these compounds. Taken together, these data suggest that targeting glycolysis through inhibition of LDH should be further investigated as a potential therapeutic approach for cancers such as Ewing sarcoma that exhibit oncogene-dependent expression of LDH and increased glycolysis. SIGNIFICANCE: LDHA is a pharmacologically tractable EWS-FLI1 transcriptional target that regulates the glycolytic dependence of Ewing sarcoma.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Glycolysis/drug effects , L-Lactate Dehydrogenase/antagonists & inhibitors , Sarcoma, Ewing/pathology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Mice, SCID , Sarcoma, Ewing/metabolism , Xenograft Model Antitumor Assays
17.
J Med Chem ; 60(22): 9184-9204, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29120638

ABSTRACT

We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazoles/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , High-Throughput Screening Assays , Humans , Male , Membranes, Artificial , Mice , Microsomes, Liver/drug effects , Permeability , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL