Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Physiol Rev ; 103(3): 1899-1964, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36656056

ABSTRACT

The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.


Subject(s)
Bone Regeneration , Mesoderm , Odontogenesis , Tissue Engineering , Tooth Loss , Tooth , Tooth/growth & development , Tissue Engineering/methods , Humans , Animals , Mesoderm/growth & development , Tooth Loss/therapy
2.
Gastroenterology ; 167(2): 343-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342194

ABSTRACT

BACKGROUND & AIMS: Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS: apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS: We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS: These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.


Subject(s)
Apoptosis , Hepatocytes , Homeostasis , Liver Regeneration , Liver , Mice, Knockout , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Caspase 3/metabolism , Mice , Hepatectomy , Disease Models, Animal , fas Receptor/metabolism , fas Receptor/genetics , Golgi Apparatus/metabolism , Endocytosis , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Mice, Inbred C57BL , Acetaminophen , Male
3.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mice , Liver/metabolism , Liver/drug effects , Mannose/pharmacology , Mannose/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
4.
Small ; : e2400260, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860737

ABSTRACT

Harnessing the developmental events of mesenchymal condensation to direct postnatal dental stem cell aggregation represents a cutting-edge and promising approach to tooth regeneration. Tooth avulsion is among the most prevalent and serious dental injuries, and odontogenic aggregates assembled by stem cells from human exfoliated deciduous teeth (SHED) have proven effective in revitalizing avulsed teeth after replantation in the clinical trial. However, whether and how SHED aggregates (SA) communicate with recipient components and promote synergistic tissue regeneration to support replanted teeth remains elusive. Here, it is shown that SA-mediated avulsed tooth regeneration involves periodontal restoration and recovery of recipient Gli1+ stem cells, which are mobilized and necessarily contribute to the reestablishment of the tooth-periodontal ligament-bone interface. Mechanistically, the release of extracellular vesicles (EVs) is revealed indispensable for the implanted SA to mobilize recipient Gli1+ cells and regenerate avulsed teeth. Furthermore, SHED aggregates-released EVs (SA-EVs) are featured with odontogenic properties linked to tissue regeneration, which enhance migration, proliferation, and differentiation of Gli1+ cells. Importantly, local application of SA-EVs per se empowers recipient Gli1+ cells and safeguards regeneration of avulsed teeth. Collectively, the findings establish a paradigm in which odontogenesis-featured EVs govern donor-recipient stem cell interplay to achieve tooth regeneration, inspiring cell-free translational regenerative strategies.

5.
Opt Express ; 30(6): 9505-9520, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299377

ABSTRACT

Panoramic and long-term observation of nanosized organelle dynamics and interactions with high spatiotemporal resolution still hold great challenge for current imaging platforms. In this study, we propose a live-organelle imaging platform, where a flat-fielding quantitative phase contrast microscope (FF-QPCM) visualizes all the membrane-bound subcellular organelles, and an intermittent fluorescence channel assists in specific organelle identification. FF-QPCM features a high spatiotemporal resolution of 245 nm and 250 Hz and strong immunity against external disturbance. Thus, we could investigate several important dynamic processes of intracellular organelles from direct perspectives, including chromosome duplication in mitosis, mitochondrial fusion and fission, filaments, and vesicles' morphologies in apoptosis. Of note, we have captured, for the first time, a new type of mitochondrial fission (entitled mitochondrial disintegration), the generation and fusion process of vesicle-like organelles, as well as the mitochondrial vacuolization during necrosis. All these results bring us new insights into spatiotemporal dynamics and interactions among organelles, and hence aid us in understanding the real behaviors and functional implications of the organelles in cellular activities.


Subject(s)
Mitochondria , Organelles , Microscopy , Microscopy, Phase-Contrast
6.
Biochem Biophys Res Commun ; 531(2): 180-186, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32788069

ABSTRACT

Senescence is closely related to the occurrence of retinal degeneration. Recent studies have shown that bone marrow mesenchymal stem cells (BMMSCs) have significant therapeutic effects on retinal degeneration, While BMMSCs suffer from functional decline in bone aging. Whether senescence affects BMMSCs therapy on retinal degeneration remains unknown. Here, we applied the previously established bone progeria animal model, the senescence-accelerated mice-prone 6 (SAMP6) strain, and surprisingly discovered that SAMP6 mice demonstrated retinal degeneration at 6 months old. Furthermore, BMMSCs derived from SAMP6 mice failed to prevent MNU-induced retinal degeneration in vivo. As expected, BMMSCs from SAMP6 mice exhibited impairment in the differentiation capacities, compared to those from the age-matched senescence-accelerated mice-resistant 1 (SAMR1) strain. Moreover, BMMSCs from SAMR1 mice counteracted MNU-induced retinal degeneration, with increased expression of the retina survival hallmark, N-myc downstream regulated gene 2 (NDRG2). Taken together, these findings reveal that bone progeria diminished the therapeutic effects of BMMSC on retinal degeneration.


Subject(s)
Bone and Bones/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Progeria/pathology , Retinal Degeneration/therapy , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation , Mice , Retina/pathology , Retinal Degeneration/pathology
7.
Microvasc Res ; 115: 58-67, 2018 01.
Article in English | MEDLINE | ID: mdl-28870649

ABSTRACT

The endotoxin lipopolysaccharide (LPS)-induced pulmonary endothelial barrier disruption is a key pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the molecular mechanisms underlying LPS-impaired permeability of pulmonary microvascular endothelial cells (PMVECs) are not fully understood. Gap junctions, particularly Connexin40 (Cx40), are necessary for the maintenance of normal vascular function. In this study, we for the first time investigated the role of Cx40 in LPS-impaired permeability of PMVECs and provided potential therapeutic approaches based on mechanistic findings of Cx40 regulation by LPS stimuli. Rat PMVECs were isolated, cultured and identified with cell morphology, specific markers, ultrastructural characteristics and functional tests. Western blot analysis demonstrated that Cx40 is the major connexin highly expressed in PMVECs. Furthermore, by inhibiting Cx40 in a time-dependent manner, LPS impaired gap junction function and induced permeability injury of PMVECs. The key role of Cx40 decline in mediating detrimental effects of LPS was further confirmed in rescue experiments through Cx40 overexpression. Mechanistically, LPS stress on PMVECs inhibited the protein kinase C (PKC) pathway, which may synergize with the inflammatory nuclear factor kappaB (NFκB) signaling activation in suppressing Cx40 expression level and phosphorylation. Moreover, through pharmacological PKC activation or NFκB inhibition, Cx40 activity in PMVECs could be restored, leading to maintained barrier function under LPS stress. Our findings uncover a previously unrecognized role of Cx40 and its regulatory mechanisms in impaired endothelial integrity under endotoxin and inflammation, shedding light on intervention approaches to improve pulmonary endothelial barrier function in ALI and ARDS.


Subject(s)
Capillary Permeability/drug effects , Connexins/metabolism , Endothelial Cells/drug effects , Lipopolysaccharides/toxicity , Lung/blood supply , Microvessels/drug effects , Animals , Cells, Cultured , Connexins/genetics , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gap Junctions/drug effects , Gap Junctions/metabolism , Gap Junctions/pathology , Microvessels/metabolism , Microvessels/pathology , NF-kappa B/metabolism , Phosphorylation , Protein Kinase C/metabolism , Rats , Signal Transduction/drug effects , Time Factors , Gap Junction alpha-5 Protein
8.
Bioelectromagnetics ; 38(8): 602-612, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28741320

ABSTRACT

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.7 cells incubated with RANKL were exposed to 15 Hz PEMF (2 h/day) at various intensities (0.5, 1, 2, and 3 mT) for 7 days. We demonstrate that bone resorbing capacity was significantly decreased by 0.5 mT PEMF mainly by inhibiting osteoclast formation and maturation, but enhanced at 3 mT by promoting osteoclast apoptosis. Moreover, gene expression of RANK, NFATc1, TRAP, CTSK, BAX, and BAX/BCL-2 was significantly decreased by 0.5 mT PEMF, but increased by 3 mT. Our findings reveal a significant intensity window for low-intensity PEMF in regulating bone resorption with diverse nature for modulating osteoclastogenesis and apoptosis. This study not only enriches our basic knowledge for the regulation of PEMF in osteoclastogenesis, but also may lead to more efficient and scientific clinical application of PEMF in regulating bone turnover and inhibiting osteopenia/osteoporosis. Bioelectromagnetics. 38:602-612, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Apoptosis/radiation effects , Bone Resorption/pathology , Electromagnetic Fields , Osteoclasts/cytology , Osteoclasts/radiation effects , RANK Ligand/pharmacology , Animals , Cytoskeleton/metabolism , Cytoskeleton/radiation effects , Dose-Response Relationship, Radiation , Gene Expression Regulation/radiation effects , Mice , Osteogenesis/radiation effects , RAW 264.7 Cells
9.
Biogerontology ; 17(2): 267-79, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26392399

ABSTRACT

The proliferation and differentiation potential of bone marrow mesenchymal stem cells (BMMSCs) declines with age and with in vitro passages. However, the underlying mechanisms and putative approaches to maintain their function are not fully understood. Recent studies have revealed telomere attrition as the core initiator determining functional decline in aging of BMMSCs. Telomere attrition activates downstream p53 signaling and compromises mitochondrial metabolism via the peroxisome proliferator-activated receptor gamma co-activator 1α/ß (PGC-1α/ß), a key process possesses peculiarities in BMMSCs distinct from other stem cells and their mature derivatives. Despite of the shortened telomere, the mitochondrial failure could be overcome through metabolic regulation by caloric restriction (CR) and its mediator Sirtuin 1 (SIRT1). Researches have shown that mitochondrial metabolic reprogramming by CR and SIRT1 alleviates functional decline of BMMSCs in aging. In this review, we intend to summarize our understanding about how telomere attrition initiates and induces mitochondrial compromise in functional decline of BMMSCs in aging, and the potential therapeutic strategies based on metabolic reprogramming.


Subject(s)
Bone Marrow Cells/cytology , Cellular Senescence/genetics , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Telomere , Animals , Humans
10.
Life Sci ; 351: 122824, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38862061

ABSTRACT

Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.


Subject(s)
Extracellular Vesicles , Liver Diseases , Liver , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/physiology , Liver/metabolism , Animals , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/physiopathology , Homeostasis/physiology , Adipose Tissue/metabolism , Brain/metabolism , Cytokines/metabolism , Bone and Bones/metabolism
11.
Sci Bull (Beijing) ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38493069

ABSTRACT

Stem cells remain in a quiescent state for long-term maintenance and preservation of potency; this process requires fine-tuning regulatory mechanisms. In this study, we identified the epigenetic landscape along the developmental trajectory of skeletal stem cells (SSCs) in skeletogenesis governed by a key regulator, Ptip (also known as Paxip1, Pax interaction with transcription-activation domain protein-1). Our results showed that Ptip is required for maintaining the quiescence and potency of SSCs, and loss of Ptip in type II collagen (Col2)+ progenitors causes abnormal activation and differentiation of SSCs, impaired growth plate morphogenesis, and long bone dysplasia. We also found that Ptip suppressed the glycolysis of SSCs through downregulation of phosphoglycerate kinase 1 (Pgk1) by repressing histone H3K27ac at the promoter region. Notably, inhibition of glycolysis improved the function of SSCs despite Ptip deficiency. To the best of our knowledge, this is the first study to establish an epigenetic framework based on Ptip, which safeguards skeletal stem cell quiescence and potency through metabolic control. This framework is expected to improve SSC-based treatments of bone developmental disorders.

12.
Theranostics ; 14(8): 3385-3403, 2024.
Article in English | MEDLINE | ID: mdl-38855175

ABSTRACT

Rationale: It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Methods: Apoptotic pathway deficient mice including Fas mutant (Fasmut ) and Fas ligand mutant (FasLmut ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis. Ovarian function was characterized by morphological analysis, biochemical examination and cellular assays. Mechanistical studies were assessed by combinations of transcriptomic and proteomic analysis as well as molecular assays. CYP17A1-Cre; Axin1fl /fl mice was established to verify the role of WNT signaling during ovarian folliculogenesis. Polycystic ovarian syndrome (PCOS) mice and 15-month-old mice were used with apoV replenishment to further validate the therapeutic effects of apoVs based on WNT signaling regulation. Results: We show that systemic administration of mesenchymal stem cell (MSC)-derived apoptotic vesicles (MSC-apoVs) can ameliorate impaired ovarian folliculogenesis, PCOS phenotype, and reduced birth rate in Fasmut and FasLmut mice. Mechanistically, transcriptome analysis results revealed that MSC-apoVs downregulated a number of aberrant gene expression in Fasmut mice, which were enriched by kyoto encyclopedia of genes and genomes (KEGG) pathway analysis in WNT signaling and sex hormone biosynthesis. Furthermore, we found that apoptotic deficiency resulted in aberrant WNT/ß-catenin activation in theca and mural granulosa cells, leading to responsive action of dickkopf1 (DKK1) in the cumulus cell and oocyte zone, which downregulated WNT/ß-catenin expression in oocytes and, therefore, impaired ovarian folliculogenesis via NPPC/cGMP/PDE3A/cAMP cascade. When WNT/ß-catenin was specially activated in theca cells of CYP17A1-Cre; Axin1fl /fl mice, the same ovarian impairment phenotypes observed in apoptosis-deficient mice were established, confirming that aberrant activation of WNT/ß-catenin in theca cells caused the impairment of ovarian folliculogenesis. We firstly revealed that apoVs delivered WNT membrane receptor inhibitor protein RNF43 to ovarian theca cells to balance follicle homeostasis through vesicle-cell membrane integration. Systemically infused RNF43-apoVs down-regulated aberrantly activated WNT/ß-catenin signaling in theca cells, contributing to ovarian functional maintenance. Since aging mice have down-regulated expression of WNT/ß-catenin in oocytes, we used MSC-apoVs to treat 15-month-old mice and found that MSC-apoVs effectively ameliorated the ovarian function and fertility capacity of these aging mice through rescuing WNT/ß-catenin expression in oocytes. Conclusion: Our studies reveal a previously unknown association between apoVs and ovarian folliculogenesis and suggest an apoV-based therapeutic approach to improve oocyte function and birth rates in PCOS and aging.


Subject(s)
Apoptosis , Mesenchymal Stem Cells , Ovarian Follicle , Ovary , Polycystic Ovary Syndrome , Wnt Signaling Pathway , Animals , Female , Polycystic Ovary Syndrome/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Disease Models, Animal , Aging/physiology , Fas Ligand Protein/metabolism , Fas Ligand Protein/genetics
13.
Postgrad Med J ; 89(1058): 709-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24151337

ABSTRACT

Chronic pain is a major public health problem. Mitochondria play important roles in a myriad of cellular processes and mitochondrial dysfunction has been implicated in multiple neurological disorders. This review aims to provide an insight into advances in understanding of the role of mitochondrial dysfunction in the pathogenesis of chronic pain. The results show that the five major mitochondrial functions (the mitochondrial energy generating system, reactive oxygen species generation, mitochondrial permeability transition pore, apoptotic pathways and intracellular calcium mobilisation) may play critical roles in neuropathic and inflammatory pain. Therefore, protecting mitochondrial function would be a promising strategy to alleviate or prevent chronic pain states. Related chronic inflammatory and neuropathic pain models, as well as the spectral characteristics of current fluorescent probes to detect mitochondria in pain studies, are also discussed.


Subject(s)
Chronic Pain/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Neuralgia/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Chronic Pain/pathology , Chronic Pain/physiopathology , Female , Humans , Inflammation/metabolism , Male , Mitochondria/pathology , Mitochondrial Permeability Transition Pore , Models, Biological , Neuralgia/pathology , Neuralgia/physiopathology , Oxidative Stress , Signal Transduction
14.
J Exp Clin Cancer Res ; 42(1): 109, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37131239

ABSTRACT

BACKGROUND: We have previously reported that extracellular vesicles (EVs) derived from osteoblastic, osteoclastic and mixed prostate cancer cells promote osteoclast differentiation and inhibit osteoblast differentiation via transferring miR-92a-1-5p. In the present study, we focused on engineering miR-92a-1-5p into EVs and determining any therapeutic roles and mechanisms of the engineered EVs. METHODS: A stable prostate cancer cell line (MDA PCa 2b) overexpressing miR-92a-1-5p was constructed by lentivirus, and EVs were isolated by ultracentrifugation. The overexpression of miR-92a-1-5p in both cells and EVs was tested using qPCR. Osteoclast function was evaluated by Trap staining, mRNA expression of osteoclastic markers ctsk and trap, immunolabeling of CTSK and TRAP and microCT using either in vitro and in vivo assays. Target gene of miR-92a-1-5p was proved by a dual-luciferase reporter assay system. siRNAs were designed and used for transient expression in order to determine the role of downstream genes on osteoclast differentiation. RESULTS: Stable overexpression cells of miRNA-92a-5p was associated with EVs upregulating this microRNA, as confirmed by qPCR. Further, miR-92a-1-5p enriched EVs promote osteoclast differentiation in vitro by reducing MAPK1 and FoxO1 expression, associated with increased osteoclast function as shown by TRAP staining and mRNA expression of osteoclast functional genes. siRNA targeting MAPK1 or FoxO1 resulted in similar increase in osteoclast function. In vivo, the miR-92a-1-5p enriched EVs given via i.v. injection promote osteolysis, which was associated with reduction of MAPK1 and FoxO1 expression in bone marrow. CONCLUSION: These experiments suggest that miR-92a-1-5p enriched EVs regulate osteoclast function via reduction of MAPK1 and FoxO1.


Subject(s)
Extracellular Vesicles , MicroRNAs , Prostatic Neoplasms , Humans , Male , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Osteoclasts/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/metabolism
15.
J Vis Exp ; (193)2023 03 24.
Article in English | MEDLINE | ID: mdl-37036220

ABSTRACT

Mesenchymal stem cells (MSCs), characterized by their self-renewal ability and multilineage differentiation potential, can be derived from various sources and are emerging as promising candidates for regenerative medicine, especially for regeneration of the tooth, bone, cartilage, and skin. The self-assembled approach of MSC aggregation, which notably constructs cell clusters mimicking the developing mesenchymal condensation, allows high-density stem cell delivery along with preserved cell-cell interactions and extracellular matrix (ECM) as the microenvironment niche. This method has been shown to enable efficient cell engraftment and survival, thus promoting the optimized application of exogenous MSCs in tissue engineering and safeguarding clinical organ regeneration. This paper provides a detailed protocol for the construction and characterization of self-assembled aggregates based on umbilical cord mesenchymal stem cells (UCMSCs), as well as an example of the cranial bone regenerative application. The implementation of this procedure will help guide the establishment of an efficient MSC transplantation strategy for tissue engineering and regenerative medicine.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Tissue Engineering/methods , Regenerative Medicine/methods , Cell Differentiation , Bone and Bones , Mesenchymal Stem Cell Transplantation/methods
16.
Bioact Mater ; 19: 626-641, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35600968

ABSTRACT

Over 300 billion of cells die every day in the human body, producing a large number of endogenous apoptotic extracellular vesicles (apoEVs). Also, allogenic stem cell transplantation, a commonly used therapeutic approach in current clinical practice, generates exogenous apoEVs. It is well known that phagocytic cells engulf and digest apoEVs to maintain the body's homeostasis. In this study, we show that a fraction of exogenous apoEVs is metabolized in the integumentary skin and hair follicles. Mechanistically, apoEVs activate the Wnt/ß-catenin pathway to facilitate their metabolism in a wave-like pattern. The migration of apoEVs is enhanced by treadmill exercise and inhibited by tail suspension, which is associated with the mechanical force-regulated expression of DKK1 in circulation. Furthermore, we show that exogenous apoEVs promote wound healing and hair growth via activation of Wnt/ß-catenin pathway in skin and hair follicle mesenchymal stem cells. This study reveals a previously unrecognized metabolic pathway of apoEVs and opens a new avenue for exploring apoEV-based therapy for skin and hair disorders.

17.
Neurobiol Stress ; 22: 100513, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636173

ABSTRACT

Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses. We surprisingly discovered that AS-EVs demonstrated significant changes in size distribution and plasma concentration compared to control group (CN) EVs. AS-EVs were further characterized by various differentially expressed proteins (DEPs) closely associated with biological, metabolic and immune regulations and were functionally important in potentially underlying multiple diseases. Notably, we first identified the lipid raft protein Stomatin as an essential biomarker expressed on the surface of AS-EVs. These findings collectively reveal that EVs are a significant function-related liquid biopsy indicator that mediate circulation alterations impinged by psychological stress, while also supporting the idea that psychological stress-associated EV-stomatin can be used as a biomarker for potentially predicting acute stress responses and monitoring psychological status. Our study will pave an avenue for implementing routine plasma EV-based theranostics in the clinic.

18.
Adv Healthc Mater ; 12(20): e2300019, 2023 08.
Article in English | MEDLINE | ID: mdl-36999744

ABSTRACT

The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds. Moreover, enlightened by the developmental process that mesenchymal condensation induces angiogenesis, it is demonstrated that mesenchymal stem/stromal cell aggregates (CAs) provide an efficacious therapy to enhance regrowth of CD31+ EMCN+ vessels in diabetic wounds, which is surprisingly suppressed by pharmacological inhibition of extracellular vesicle (EV) release. It is further shown that CAs promote secretion of angiogenic protein-enriched EVs by proteomic analysis, which directly exert high efficacy in boosting CD31+ EMCN+ vessels and treating nonhealing diabetic wounds. These results add to the current knowledge on skin vasculature and help establish feasible strategies to benefit wound healing under diabetic condition.


Subject(s)
Diabetes Mellitus , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Endothelial Cells/metabolism , Proteomics , Wound Healing/physiology , Skin/injuries
19.
Bioact Mater ; 25: 472-484, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37056273

ABSTRACT

Mesenchymal stem cells (MSCs) influence T cells in health, disease and therapy through messengers of intercellular communication including extracellular vesicles (EVs). Apoptosis is a mode of cell death that tends to promote immune tolerance, and a large number of apoptotic vesicles (apoVs) are generated from MSCs during apoptosis. In an effort to characterize these apoVs and explore their immunomodulatory potential, here we show that after replenishing them systemically, the apoV deficiency in Fas mutant mice and pathological lymphoproliferation were rescued, leading to the amelioration of inflammation and lupus activity. ApoVs directly interacted with CD4+ T cells and inhibited CD25 expression and IL-2 production in a dose-dependent manner. A broad range of Th1/2/17 subsets and cytokines including IFNγ, IL17A and IL-10 were suppressed while Foxp3+ cells were maintained. Mechanistically, exposed phosphatidylserine (PtdSer/PS) on apoVs mediated the interaction with T cells to disrupt proximal T cell receptor signaling transduction. Remarkably, administration of apoVs prevented Th17 differentiation and memory formation, and ameliorated inflammation and joint erosion in murine arthritis. Collectively, our findings unveil a previously unrecognized crosstalk between MSC apoVs and CD4+ T cells and suggest a promising therapeutic use of apoVs for autoimmune diseases.

20.
iScience ; 26(9): 107455, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37680481

ABSTRACT

Type H vessels couple angiogenesis with osteogenesis, while sympathetic cues regulate vascular and skeletal function. The crosstalk between sympathetic nerves and type H vessels in bone remains unclear. Here, we first identify close spatial connections between sympathetic nerves and type H vessels in bone, particularly in metaphysis. Sympathoexcitation, mimicked by isoproterenol (ISO) injection, reduces type H vessels and bone mass. Conversely, beta-2-adrenergic receptor (ADRB2) deficiency maintains type H vessels and bone mass in the physiological condition. In vitro experiments reveal indirect sympathetic modulation of angiogenesis via paracrine effects of mesenchymal stem cells (MSCs), which alter the transcription of multiple angiogenic genes in endothelial cells (ECs). Furthermore, Notch signaling in ECs underlies sympathoexcitation-regulated type H vessel formation, impacting osteogenesis and bone mass. Finally, propranolol (PRO) inhibits beta-adrenergic activity and protects type H vessels and bone mass against estrogen deficiency. These findings unravel the specialized neurovascular coupling in bone homeostasis and regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL