Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051525

ABSTRACT

Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024.

2.
Hum Brain Mapp ; 45(12): e26816, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39169546

ABSTRACT

Although 7 T MRI research has contributed much to our understanding of multiple sclerosis (MS) pathology, most prior data has come from small, single-center studies with varying methods. In order to truly know if such findings have widespread applicability, multicenter methods and studies are needed. To address this, members of the North American Imaging in MS (NAIMS) Cooperative worked together to create a multicenter collaborative study of 7 T MRI in MS. In this manuscript, we describe the methods we have developed for the purpose of pooling together a large, retrospective dataset of 7 T MRIs acquired in multiple MS studies at five institutions. To date, this group has contributed five-hundred and twenty-eight 7 T MRI scans from 350 individuals with MS to a common data repository, with plans to continue to increase this sample size in the coming years. We have developed unified methods for image processing for data harmonization and lesion identification/segmentation. We report here our initial observations on intersite differences in acquisition, which includes site/device differences in brain coverage and image quality. We also report on the development of our methods and training of image evaluators, which resulted in median Dice Similarity Coefficients for trained raters' annotation of cortical and deep gray matter lesions, paramagnetic rim lesions, and meningeal enhancement between 0.73 and 0.82 compared to final consensus masks. We expect this publication to act as a resource for other investigators aiming to combine multicenter 7 T MRI datasets for the study of MS, in addition to providing a methodological reference for all future analysis projects to stem from the development of this dataset.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Adult , Female , Brain/diagnostic imaging , Brain/pathology , Male , Middle Aged , Retrospective Studies , Image Processing, Computer-Assisted/methods
3.
Mult Scler ; 29(7): 866-874, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060245

ABSTRACT

BACKGROUND: Multiple Sclerosis (MS) affects people in their most productive years of life. Consequently, MS can substantially affect employment and work-related outcomes. OBJECTIVES: This study characterizes productivity loss and employment status of people with multiple sclerosis (pwMS) and investigates associated factors. METHODS: We used baseline data collected as part of the Canadian Prospective Cohort Study to Understand Progression in Multiple Sclerosis (CanProCo). Using the Valuation of Lost Productivity questionnaire, we measured MS-related paid work productivity loss for those employed, productivity losses incurred by those unemployed (i.e. lost employment time), and unpaid work productivity losses for all. A set of sociodemographic, disease, and performance-related factors were investigated using a two-part regression model for productivity loss and a multinomial logistic model for employment status. RESULTS: From the cohort of 888 pwMS enrolled at baseline (mostly showing mild to moderate disability), 75% were employed, and of those unemployed, 69% attributed their unemployment to health-related issues. Total productivity loss over a 3-month period averaged 64 and 395 hours for those employed and unemployed, respectively. Some factors that affected productivity loss and employment status included use of disease-modifying therapies, fatigue, and performance indicators such as cognitive processing speed. CONCLUSION: Productivity loss experienced by employed and unemployed pwMS is substantial. Targeting the identified modifiable factors is likely to improve work productivity and permanence of MS patients in the workforce.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/psychology , Prospective Studies , Canada , Employment , Unemployment
4.
Mult Scler ; 29(6): 741-747, 2023 05.
Article in English | MEDLINE | ID: mdl-37148240

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by two major and interconnected hallmarks: inflammation and progressive neurodegeneration. OBJECTIVE: The aim of this work was to compare neurodegenerative processes, in the form of global and regional brain volume loss rates, in healthy controls (HCs) and in patients with relapsing MS (RMS) treated with ocrelizumab, which suppresses acute inflammation. METHODS: Whole brain, white matter, cortical gray matter, thalamic, and cerebellar volume loss rates were assessed in 44 HCs that were part of a substudy in the OPERA II randomized controlled trial (NCT01412333) and 59 patients with RMS enrolled in the same substudy as well as age- and sex-matched patients in OPERA I (NCT01247324) and II. Volume loss rates were computed using random coefficients models over a period of 2 years. RESULTS: Ocrelizumab-treated patients showed global and regional brain volume loss rates that were approaching that of HCs. CONCLUSION: These findings are consistent with an important role of inflammation on overall tissue loss and the role of ocrelizumab in reducing this phenomenon.


Subject(s)
Healthy Aging , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/chemically induced , Immunologic Factors/adverse effects , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Magnetic Resonance Imaging , Recurrence , Inflammation
5.
Mult Scler ; 28(9): 1414-1423, 2022 08.
Article in English | MEDLINE | ID: mdl-35137613

ABSTRACT

OBJECTIVES: To analyze work productivity loss and costs, including absenteeism (time missed from work), presenteeism (reduced productivity while working), and unpaid work loss, among a sample of employed people with multiple sclerosis (pwMS) in Canada, as well as its association with clinical, sociodemographic, and work-related factors. METHODS: We used cross-sectional data collected as part of the Canadian Prospective Cohort Study to Understand Progression in MS (CanProCo) and information from the Valuation of Lost Productivity questionnaire. RESULTS: Among 512 pwMS who were employed, 97% showed no or mild disability and 55% experienced productivity loss due to MS in the prior 3 months. Total productivity time loss over a 3-month period averaged 60 hours (SD = 107; 23 from presenteeism, 19 from absenteeism, and 18 from unpaid work), leading to a mean cost of lost productivity of CAD$2480 (SD = 4282) per patient, with an hourly paid productivity loss greater than the wage loss. Fatigue retained significant associations with all productivity loss outcomes. CONCLUSION: Unpaid work loss and productivity losses exceeding those of the employee alone (due to teamwork and associated factors) are key additional contributors of the high economic burden of MS. Workplace accommodations and treatments targeted at fatigue could lessen the economic impact of MS.


Subject(s)
Multiple Sclerosis , Canada , Cross-Sectional Studies , Fatigue , Humans , Prospective Studies
6.
Mult Scler ; 28(13): 2081-2089, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35848622

ABSTRACT

BACKGROUND: In the trial of Minocycline in Clinically Isolated Syndrome (MinoCIS), minocycline significantly reduced the risk of conversion to clinically definite multiple sclerosis (CDMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in MS, and minocycline modulates matrix metalloproteinases (MMPs). OBJECTIVE: To assess the value of blood NfL and GFAP as a biomarker of baseline and future disease activity and its utility to monitor treatment response in minocycline-treated patients with clinically isolated syndrome (CIS). METHODS: We measured NfL, GFAP, and MMPs in blood samples from 96 patients with CIS from the MinoCIS study and compared biomarkers with clinical and radiologic characteristics and outcome. RESULTS: At baseline, NfL levels correlated with T2 lesion load and number of gadolinium-enhancing lesions. Baseline NfL levels predicted conversion into CDMS at month 6. GFAP levels at baseline were correlated with T2 lesion volume. Minocycline treatment significantly increased NfL levels at 3 months but not at 6 months, and decreased GFAP levels at month 6. Minocycline decreased MMP-7 concentrations at month 1. DISCUSSION: Blood NfL levels are associated with measures of disease activity in CIS and have prognostic value. Minocycline increased NfL levels at month 3, but reduced GFAP and MMP-7 levels.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Biomarkers , Demyelinating Diseases/drug therapy , Gadolinium , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Matrix Metalloproteinase 7 , Minocycline/therapeutic use , Multiple Sclerosis/drug therapy , Neurofilament Proteins
7.
Mult Scler ; 28(12): 1927-1936, 2022 10.
Article in English | MEDLINE | ID: mdl-35672926

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), thalamic integrity is affected directly by demyelination and neuronal loss, and indirectly by gray/white matter lesions outside the thalamus, altering thalamic neuronal projections. OBJECTIVE: To assess the efficacy of ocrelizumab compared with interferon beta-1a (IFNß1a)/placebo on thalamic volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II; NCT01247324/NCT01412333) and in primary progressive MS (PPMS, ORATORIO; NCT01194570). METHODS: Thalamic volume change was computed using paired Jacobian integration and analyzed using an adjusted mixed-effects repeated measurement model. RESULTS: Over the double-blind period, ocrelizumab treatment significantly reduced thalamic volume loss with the largest effect size (Cohen's d: RMS: 0.561 at week 96; PPMS: 0.427 at week 120) compared with whole brain, cortical gray matter, and white matter volume loss. At the end of up to 7 years of follow-up, patients initially randomized to ocrelizumab still showed less thalamic volume loss than those switching from IFNß1a (p < 0.001) or placebo (p < 0.001). CONCLUSION: Ocrelizumab effectively reduced thalamic volume loss compared with IFNß1a/placebo. Early treatment effects on thalamic tissue preservation persisted over time. Thalamic volume loss could be a potential sensitive marker of persisting tissue damage.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Clinical Trials, Phase III as Topic , Double-Blind Method , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interferon beta-1a/therapeutic use , Magnetic Resonance Imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Randomized Controlled Trials as Topic
8.
Mult Scler ; 28(5): 842-846, 2022 04.
Article in English | MEDLINE | ID: mdl-34882037

ABSTRACT

Does preexisting or treatment-emergent autoimmunity increase the risk of subsequent autoimmune disease in individuals with relapsing-remitting multiple sclerosis (MS) after alemtuzumab? In the extended phase 2/3 trials, 34/96 (35.4%) patients with and 395/1120 (35.3%) without preexisting autoimmunity developed non-MS autoimmunity. Thyroid autoimmunity after alemtuzumab courses 1 or 2 did not increase subsequent non-thyroid autoimmune adverse events. Therefore, autoimmune disease before or after alemtuzumab treatment does not predict autoimmunity after further courses, so should not preclude adequate alemtuzumab dosing to control MS. Finally, post-marketing safety data contribute toward a full record of the alemtuzumab benefit/risk profile for the MS field.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Alemtuzumab/adverse effects , Autoimmunity , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Humans , Marketing , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy
9.
Mult Scler ; 28(3): 418-428, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34132126

ABSTRACT

BACKGROUND: Advanced magnetic resonance imaging (MRI) methods can provide more specific information about various microstructural tissue changes in multiple sclerosis (MS) brain. Quantitative measurement of T1 and T2 relaxation, and diffusion basis spectrum imaging (DBSI) yield metrics related to the pathology of neuroinflammation and neurodegeneration that occurs across the spectrum of MS. OBJECTIVE: To use relaxation and DBSI MRI metrics to describe measures of neuroinflammation, myelin and axons in different MS subtypes. METHODS: 103 participants (20 clinically isolated syndrome (CIS), 33 relapsing-remitting MS (RRMS), 30 secondary progressive MS and 20 primary progressive MS) underwent quantitative T1, T2, DBSI and conventional 3T MRI. Whole brain, normal-appearing white matter, lesion and corpus callosum MRI metrics were compared across MS subtypes. RESULTS: A gradation of MRI metric values was seen from CIS to RRMS to progressive MS. RRMS demonstrated large oedema-related differences, while progressive MS had the most extensive abnormalities in myelin and axonal measures. CONCLUSION: Relaxation and DBSI-derived MRI measures show differences between MS subtypes related to the severity and composition of underlying tissue damage. RRMS showed oedema, demyelination and axonal loss compared with CIS. Progressive MS had even more evidence of increased oedema, demyelination and axonal loss compared with CIS and RRMS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Neuroinflammatory Diseases , White Matter/diagnostic imaging , White Matter/pathology
10.
PLoS Genet ; 15(6): e1008180, 2019 06.
Article in English | MEDLINE | ID: mdl-31170158

ABSTRACT

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.


Subject(s)
Genetic Predisposition to Disease , Inflammation/genetics , Multiple Sclerosis/genetics , Transcriptome/genetics , Adult , Codon, Nonsense , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Exome/genetics , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/genetics , Myelin Sheath/pathology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Neurons/metabolism , Neurons/pathology , Pedigree , Exome Sequencing , Young Adult
11.
Mult Scler ; 27(14): 2191-2198, 2021 12.
Article in English | MEDLINE | ID: mdl-33749378

ABSTRACT

BACKGROUND: Myelin water imaging (MWI) was recently optimized to provide quantitative in vivo measurement of spinal cord myelin, which is critically involved in multiple sclerosis (MS) disability. OBJECTIVE: To assess cervical cord myelin measurements in relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (ProgMS) participants and evaluate the correlation between myelin measures and clinical disability. METHODS: We used MWI data from 35 RRMS, 30 ProgMS, and 28 healthy control (HC) participants collected at cord level C2/C3 on a 3 T magnetic resonance imaging (MRI) scanner. Myelin heterogeneity index (MHI), a measurement of myelin variability, was calculated for whole cervical cord, global white matter, dorsal column, lateral and ventral funiculi. Correlations were assessed between MHI and Expanded Disability Status Scale (EDSS), 9-Hole Peg Test (9HPT), timed 25-foot walk, and disease duration. RESULTS: In various regions of the cervical cord, ProgMS MHI was higher compared to HC (between 9.5% and 31%, p ⩽ 0.04) and RRMS (between 13% and 26%, p ⩽ 0.02), and ProgMS MHI was associated with EDSS (r = 0.42-0.52) and 9HPT (r = 0.45-0.52). CONCLUSION: Myelin abnormalities within clinically eloquent areas are related to clinical disability. MWI metrics have a potential role for monitoring subclinical disease progression and adjudicating treatment efficacy for new therapies targeting ProgMS.


Subject(s)
Cervical Cord , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Cervical Cord/diagnostic imaging , Disability Evaluation , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Myelin Sheath , Spinal Cord
12.
BMC Neurol ; 21(1): 418, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34706670

ABSTRACT

BACKGROUND: Neurological disability progression occurs across the spectrum of people living with multiple sclerosis (MS). Although there are a handful of disease-modifying treatments approved for use in progressive phenotypes of MS, there are no treatments that substantially modify the course of clinical progression in MS. Characterizing the determinants of clinical progression can inform the development of novel therapeutic agents and treatment approaches that target progression in MS, which is one of the greatest unmet needs in clinical practice. Canada, having one of the world's highest rates of MS and a publicly-funded health care system, represents an optimal country to achieve in-depth analysis of progression. Accordingly, the overarching aim of the Canadian Prospective Cohort Study to Understand Progression in MS (CanProCo) is to evaluate a wide spectrum of factors associated with the clinical onset and rate of disease progression in MS, and to describe how these factors relate to one another to influence progression. METHODS: CanProCo is a prospective, observational cohort study with investigators specializing in epidemiology, neuroimaging, neuroimmunology, health services research and health economics. CanProCo's study design was approved by an international review panel, comprised of content experts and key stakeholders. One thousand individuals with radiologically-isolated syndrome, relapsing-remitting MS, and primary-progressive MS within 10-15 years of disease onset will be recruited from 5 academic MS centres in Canada. Participants will undergo detailed clinical evaluation annually over 5 years (including advanced, app-based clinical data collection). In a subset of participants within 5-10 years of disease onset (n = 500), blood, cerebrospinal fluid, and research MRIs will be collected allowing an integrated, in-depth evaluation of factors contributing to progression in MS from multiple perspectives. Factors of interest range from biological measures (e.g. single-cell RNA-sequencing), MRI-based microstructural assessment, participant characteristics (self-reported, performance-based, clinician-assessed, health-system based), and micro and macro-environmental factors. DISCUSSION: Halting the progression of MS remains a fundamental need to improve the lives of people living with MS. Achieving this requires leveraging transdisciplinary approaches to better characterize why clinical progression occurs. CanProCo is a pioneering multi-dimensional cohort study aiming to characterize these determinants to inform the development and implementation of efficacious and effective interventions.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Canada , Cohort Studies , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/epidemiology , Multiple Sclerosis/therapy , Prospective Studies
13.
Neuroimage ; 210: 116551, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31978542

ABSTRACT

PURPOSE: Based on a deep learning neural network (NN) algorithm, a super fast and easy to implement data analysis method was proposed for myelin water imaging (MWI) to calculate the myelin water fraction (MWF). METHODS: A NN was constructed and trained on MWI data acquired by a 32-echo 3D gradient and spin echo (GRASE) sequence. Ground truth labels were created by regularized non-negative least squares (NNLS) with stimulated echo corrections. Voxel-wise GRASE data from 5 brains (4 healthy, 1 multiple sclerosis (MS)) were used for NN training. The trained NN was tested on 2 healthy brains, 1 MS brain with segmented lesions, 1 healthy spinal cord, and 1 healthy brain acquired from a different scanner. RESULTS: Production of whole brain MWF maps in approximately 33 â€‹s can be achieved by a trained NN without graphics card acceleration. For all testing regions, no visual differences between NN and NNLS MWF maps were observed, and no obvious regional biases were found. Quantitatively, all voxels exhibited excellent agreement between NN and NNLS (all R2>0.98, p â€‹< â€‹0.001, mean absolute error <0.01). CONCLUSION: The time for accurate MWF calculation can be dramatically reduced to less than 1 â€‹min by the proposed NN, addressing one of the barriers facing future clinical feasibility of MWI.


Subject(s)
Body Water/diagnostic imaging , Brain/diagnostic imaging , Deep Learning , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Myelin Sheath , Neuroimaging/methods , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged
14.
N Engl J Med ; 376(22): 2122-2133, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28564557

ABSTRACT

BACKGROUND: On the basis of encouraging preliminary results, we conducted a randomized, controlled trial to determine whether minocycline reduces the risk of conversion from a first demyelinating event (also known as a clinically isolated syndrome) to multiple sclerosis. METHODS: During the period from January 2009 through July 2013, we randomly assigned participants who had had their first demyelinating symptoms within the previous 180 days to receive either 100 mg of minocycline, administered orally twice daily, or placebo. Administration of minocycline or placebo was continued until a diagnosis of multiple sclerosis was established or until 24 months after randomization, whichever came first. The primary outcome was conversion to multiple sclerosis (diagnosed on the basis of the 2005 McDonald criteria) within 6 months after randomization. Secondary outcomes included conversion to multiple sclerosis within 24 months after randomization and changes on magnetic resonance imaging (MRI) at 6 months and 24 months (change in lesion volume on T2-weighted MRI, cumulative number of new lesions enhanced on T1-weighted MRI ["enhancing lesions"], and cumulative combined number of unique lesions [new enhancing lesions on T1-weighted MRI plus new and newly enlarged lesions on T2-weighted MRI]). RESULTS: A total of 142 eligible participants underwent randomization at 12 Canadian multiple sclerosis clinics; 72 participants were assigned to the minocycline group and 70 to the placebo group. The mean age of the participants was 35.8 years, and 68.3% were women. The unadjusted risk of conversion to multiple sclerosis within 6 months after randomization was 61.0% in the placebo group and 33.4% in the minocycline group, a difference of 27.6 percentage points (95% confidence interval [CI], 11.4 to 43.9; P=0.001). After adjustment for the number of enhancing lesions at baseline, the difference in the risk of conversion to multiple sclerosis within 6 months after randomization was 18.5 percentage points (95% CI, 3.7 to 33.3; P=0.01); the unadjusted risk difference was not significant at the 24-month secondary outcome time point (P=0.06). All secondary MRI outcomes favored minocycline over placebo at 6 months but not at 24 months. Trial withdrawals and adverse events of rash, dizziness, and dental discoloration were more frequent among participants who received minocycline than among those who received placebo. CONCLUSIONS: The risk of conversion from a clinically isolated syndrome to multiple sclerosis was significantly lower with minocycline than with placebo over 6 months but not over 24 months. (Funded by the Multiple Sclerosis Society of Canada; ClinicalTrials.gov number, NCT00666887 .).


Subject(s)
Anti-Bacterial Agents/therapeutic use , Demyelinating Diseases/drug therapy , Minocycline/therapeutic use , Multiple Sclerosis/prevention & control , Actuarial Analysis , Administration, Oral , Adult , Anti-Bacterial Agents/adverse effects , Disease Progression , Dizziness/chemically induced , Double-Blind Method , Exanthema/chemically induced , Female , Humans , Intention to Treat Analysis , Life Tables , Magnetic Resonance Imaging , Male , Middle Aged , Minocycline/adverse effects , Multiple Sclerosis/diagnostic imaging , Risk , Tooth Discoloration/chemically induced
15.
N Engl J Med ; 376(3): 221-234, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28002679

ABSTRACT

BACKGROUND: B cells influence the pathogenesis of multiple sclerosis. Ocrelizumab is a humanized monoclonal antibody that selectively depletes CD20+ B cells. METHODS: In two identical phase 3 trials, we randomly assigned 821 and 835 patients with relapsing multiple sclerosis to receive intravenous ocrelizumab at a dose of 600 mg every 24 weeks or subcutaneous interferon beta-1a at a dose of 44 µg three times weekly for 96 weeks. The primary end point was the annualized relapse rate. RESULTS: The annualized relapse rate was lower with ocrelizumab than with interferon beta-1a in trial 1 (0.16 vs. 0.29; 46% lower rate with ocrelizumab; P<0.001) and in trial 2 (0.16 vs. 0.29; 47% lower rate; P<0.001). In prespecified pooled analyses, the percentage of patients with disability progression confirmed at 12 weeks was significantly lower with ocrelizumab than with interferon beta-1a (9.1% vs. 13.6%; hazard ratio, 0.60; 95% confidence interval [CI], 0.45 to 0.81; P<0.001), as was the percentage of patients with disability progression confirmed at 24 weeks (6.9% vs. 10.5%; hazard ratio, 0.60; 95% CI, 0.43 to 0.84; P=0.003). The mean number of gadolinium-enhancing lesions per T1-weighted magnetic resonance scan was 0.02 with ocrelizumab versus 0.29 with interferon beta-1a in trial 1 (94% lower number of lesions with ocrelizumab, P<0.001) and 0.02 versus 0.42 in trial 2 (95% lower number of lesions, P<0.001). The change in the Multiple Sclerosis Functional Composite score (a composite measure of walking speed, upper-limb movements, and cognition; for this z score, negative values indicate worsening and positive values indicate improvement) significantly favored ocrelizumab over interferon beta-1a in trial 2 (0.28 vs. 0.17, P=0.004) but not in trial 1 (0.21 vs. 0.17, P=0.33). Infusion-related reactions occurred in 34.3% of the patients treated with ocrelizumab. Serious infection occurred in 1.3% of the patients treated with ocrelizumab and in 2.9% of those treated with interferon beta-1a. Neoplasms occurred in 0.5% of the patients treated with ocrelizumab and in 0.2% of those treated with interferon beta-1a. CONCLUSIONS: Among patients with relapsing multiple sclerosis, ocrelizumab was associated with lower rates of disease activity and progression than interferon beta-1a over a period of 96 weeks. Larger and longer studies of the safety of ocrelizumab are required. (Funded by F. Hoffmann-La Roche; OPERA I and II ClinicalTrials.gov numbers, NCT01247324 and NCT01412333 , respectively.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Immunologic Factors/therapeutic use , Interferon-beta/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antigens, CD20 , B-Lymphocytes/immunology , Brain/diagnostic imaging , Disease Progression , Female , Humans , Immunologic Factors/adverse effects , Infusions, Intravenous/adverse effects , Interferon-beta/adverse effects , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Recurrence
16.
N Engl J Med ; 376(3): 209-220, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28002688

ABSTRACT

BACKGROUND: An evolving understanding of the immunopathogenesis of multiple sclerosis suggests that depleting B cells could be useful for treatment. We studied ocrelizumab, a humanized monoclonal antibody that selectively depletes CD20-expressing B cells, in the primary progressive form of the disease. METHODS: In this phase 3 trial, we randomly assigned 732 patients with primary progressive multiple sclerosis in a 2:1 ratio to receive intravenous ocrelizumab (600 mg) or placebo every 24 weeks for at least 120 weeks and until a prespecified number of confirmed disability progression events had occurred. The primary end point was the percentage of patients with disability progression confirmed at 12 weeks in a time-to-event analysis. RESULTS: The percentage of patients with 12-week confirmed disability progression was 32.9% with ocrelizumab versus 39.3% with placebo (hazard ratio, 0.76; 95% confidence interval [CI], 0.59 to 0.98; P=0.03). The percentage of patients with 24-week confirmed disability progression was 29.6% with ocrelizumab versus 35.7% with placebo (hazard ratio, 0.75; 95% CI, 0.58 to 0.98; P=0.04). By week 120, performance on the timed 25-foot walk worsened by 38.9% with ocrelizumab versus 55.1% with placebo (P=0.04); the total volume of brain lesions on T2-weighted magnetic resonance imaging (MRI) decreased by 3.4% with ocrelizumab and increased by 7.4% with placebo (P<0.001); and the percentage of brain-volume loss was 0.90% with ocrelizumab versus 1.09% with placebo (P=0.02). There was no significant difference in the change in the Physical Component Summary score of the 36-Item Short-Form Health Survey. Infusion-related reactions, upper respiratory tract infections, and oral herpes infections were more frequent with ocrelizumab than with placebo. Neoplasms occurred in 2.3% of patients who received ocrelizumab and in 0.8% of patients who received placebo; there was no clinically significant difference between groups in the rates of serious adverse events and serious infections. CONCLUSIONS: Among patients with primary progressive multiple sclerosis, ocrelizumab was associated with lower rates of clinical and MRI progression than placebo. Extended observation is required to determine the long-term safety and efficacy of ocrelizumab. (Funded by F. Hoffmann-La Roche; ORATORIO ClinicalTrials.gov number, NCT01194570 .).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Multiple Sclerosis, Chronic Progressive/drug therapy , Adolescent , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antigens, CD20 , B-Lymphocytes/immunology , Brain/diagnostic imaging , Disease Progression , Double-Blind Method , Female , Humans , Infusions, Intravenous/adverse effects , Intention to Treat Analysis , Lymphocyte Count , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/immunology , T-Lymphocytes , Young Adult
17.
Immunogenetics ; 72(6-7): 381-385, 2020 09.
Article in English | MEDLINE | ID: mdl-32529290

ABSTRACT

Genetic and functional analyses of the inflammasome suggest a role for this multiprotein complex in the biological mechanisms leading to the onset and progression of multiple sclerosis (MS). Nucleotide-binding, leucine-rich repeat (NLR) receptors trigger the activation and assembly of specific inflammasomes in response to danger signals. Mining exome sequencing data from 326 MS patients identified 17 rare missense or nonsense variants in NLR family pyrin domain containing 1 (NLRP1), NLRP3, NLRP6, NLRP7 and NLR family CARD domain containing 4 (NLRC4). Genotyping these variants in 2503 MS cases and 1076 healthy controls did not result in statistically significant differences between groups, and segregation analysis within MS families was largely unsupportive of co-segregation of these variants with disease. However, the identification of MS patients harboring rare homozygote variants in NLRP1 (p.Ile601Phe and p.Ser1387Ile), a variant in NLRP3 (p.Leu832Ile) resulting in the substitution of a critical amino acid for the formation of its leucine-rich repeat domain, and several MS patients with NLRC4 variants (p.Arg310Ter and p.Glu600Ter) causing protein truncations suggest that rare protein-altering variants in inflammasome-activating NLR receptors may contribute to MS risk.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Inflammasomes/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Mutation , Female , Humans , Male , Multiple Sclerosis/immunology , Pedigree
18.
J Neuroinflammation ; 17(1): 189, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32539719

ABSTRACT

OBJECTIVE: To characterize long-term repopulation of peripheral immune cells following alemtuzumab-induced lymphopenia in relapsing-remitting MS (RRMS), with a focus on regulatory cell types, and to explore associations with clinical outcome measures. METHODS: The project was designed as a multicenter add-on longitudinal mechanistic study for RRMS patients enrolled in CARE-MS II, CARE-MS II extension at the University of Southern California and Stanford University, and an investigator-initiated study conducted at the Universities of British Columbia and Chicago. Methods involved collection of blood at baseline, prior to alemtuzumab administration, and at months 5, 11, 17, 23, 36, and 48 post-treatment. T cell, B cell, and natural killer (NK) cell subsets, chemokine receptor expression in T cells, in vitro cytokine secretion patterns, and regulatory T cell (Treg) function were assessed. Clinical outcomes, including expanded disability status score (EDSS), relapses, conventional magnetic resonance imaging (MRI) measures, and incidents of secondary autoimmunity were tracked. RESULTS: Variable shifts in lymphocyte populations occurred over time in favor of CD4+ T cells, B cells, and NK cells with surface phenotypes characteristic of regulatory subsets, accompanied by reduced ratios of effector to regulatory cell types. Evidence of increased Treg competence was observed after each treatment course. CD4+ and CD8+ T cells that express CXCR3 and CCR5 and CD8+ T cells that express CDR3 and CCR4 were also enriched after treatment, indicating heightened trafficking potential in activated T cells. Patterns of repopulation were not associated with measures of clinical efficacy or secondary autoimmunity, but exploratory analyses using a random generalized estimating equation (GEE) Poisson model provide preliminary evidence of associations between pro-inflammatory cell types and increased risk for gadolinium (Gd+) enhancing lesions, while regulatory subsets were associated with reduced risk. In addition, the risk for T2 lesions correlated with increases in CD3+CD8+CXCR3+ cells. CONCLUSIONS: Lymphocyte repopulation after alemtuzumab treatment favors regulatory subsets in the T cell, B cell, and NK cell compartments. Clinical efficacy may reflect the sum of interactions among them, leading to control of potentially pathogenic effector cell types. Several immune measures were identified as possible biomarkers of lesion activity. Future studies are necessary to more precisely define regulatory and effector subsets and their contributions to clinical efficacy and risk for secondary autoimmunity in alemtuzumab-treated patients, and to reveal new insights into mechanisms of immunopathogenesis in MS. TRIAL REGISTRATION: Parent trials for this study are registered with ClinicalTrials.gov: CARE-MS II: NCT00548405, CARE-MS II extension: NCT00930553 and ISS: NCT01307332.


Subject(s)
Alemtuzumab/therapeutic use , Immunologic Factors/therapeutic use , Lymphocytes/drug effects , Lymphocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Adult , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Female , Humans , Immunophenotyping , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , Multiple Sclerosis, Relapsing-Remitting/drug therapy , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
19.
Mult Scler ; 26(14): 1866-1876, 2020 12.
Article in English | MEDLINE | ID: mdl-31762387

ABSTRACT

BACKGROUND: Alemtuzumab is given as two annual courses. Patients with continued disease activity may receive as-needed additional courses. OBJECTIVE: To evaluate efficacy and safety of additional alemtuzumab courses in the CARE-MS (Comparison of Alemtuzumab and Rebif® Efficacy in Multiple Sclerosis) studies and their extensions. METHODS: Subgroups were based on the number of additional alemtuzumab courses received. Exclusion criteria: other disease-modifying therapy (DMT); <12-month follow-up after last alemtuzumab course. RESULTS: In the additional-courses groups, Courses 3 and 4 reduced annualized relapse rate (12 months before: 0.73 and 0.74, respectively; 12 months after: 0.07 and 0.08). For 36 months after Courses 3 and 4, 89% and 92% of patients were free of 6-month confirmed disability worsening, respectively, with 20% and 26% achieving 6-month confirmed disability improvement. Freedom from magnetic resonance imaging (MRI) disease activity increased after Courses 3 and 4 (12 months before: 43% and 53%, respectively; 12 months after: 73% and 74%). Safety was similar across groups; serious events occurred irrespective of the number of courses. CONCLUSION: Additional alemtuzumab courses significantly improved outcomes, without increased safety risks, in CARE-MS patients with continued disease activity after Course 2. How this compares to outcomes if treatment is switched to another DMT instead remains unknown.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Alemtuzumab , Humans , Interferon beta-1a , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Recurrence
20.
Brain ; 142(7): 1858-1875, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31209474

ABSTRACT

MRI has improved the diagnostic work-up of multiple sclerosis, but inappropriate image interpretation and application of MRI diagnostic criteria contribute to misdiagnosis. Some diseases, now recognized as conditions distinct from multiple sclerosis, may satisfy the MRI criteria for multiple sclerosis (e.g. neuromyelitis optica spectrum disorders, Susac syndrome), thus making the diagnosis of multiple sclerosis more challenging, especially if biomarker testing (such as serum anti-AQP4 antibodies) is not informative. Improvements in MRI technology contribute and promise to better define the typical features of multiple sclerosis lesions (e.g. juxtacortical and periventricular location, cortical involvement). Greater understanding of some key aspects of multiple sclerosis pathobiology has allowed the identification of characteristics more specific to multiple sclerosis (e.g. central vein sign, subpial demyelination and lesional rims), which are not included in the current multiple sclerosis diagnostic criteria. In this review, we provide the clinicians and researchers with a practical guide to enhance the proper recognition of multiple sclerosis lesions, including a thorough definition and illustration of typical MRI features, as well as a discussion of red flags suggestive of alternative diagnoses. We also discuss the possible place of emerging qualitative features of lesions which may become important in the near future.


Subject(s)
Multiple Sclerosis/diagnostic imaging , Practice Guidelines as Topic , Diagnosis, Differential , Humans , Magnetic Resonance Imaging , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL