Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33441339

ABSTRACT

Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Ad with a deletion in early region 3 (ΔE3) provokes a stronger immune response than Ad with deletions in early regions 1 and E3 (ΔE1/ΔE3). The ΔE1/ΔE3 Ads are more popular because they can carry a larger transgene and because of the deleted E1 (E1A and E1B), are perceived safer for clinical use. Ad with a deletion in E1B55K (ΔE1B55K) has been in phase III clinical trials for use in cancer therapy in the US and has been approved for use in head and neck tumor therapy in China, demonstrating that Ad containing E1A are safe for clinical use. We have shown previously that ΔE1B55K Ad, even while promoting lower levels of an inserted transgene, promoted similar levels of transgene-specific immune responses as a ΔE3 Ad. Products of the Ad early region 4 (E4) limit the ability of cells to mount an innate immune response. Using this knowledge, we deleted the Ad E4 open reading frames 1-4 (E4orf1-4) from the ΔE1B55K Ad. Here, we show that innate cytokine network genes are elevated in the ΔE4 Ad-infected cells beyond that of ΔE3 Ad-infected cells. Further, in immunized mice the IgG2a subclass was favored as was the IgG1 subclass in immunized nonhuman primates. Thus, Ad E4 impacts immune responses in cells, in immunized mice, and immunized nonhuman primates. These Ad may offer advantages that are beneficial for clinical use.Importance: Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Here we provide evidence in cells, mice, and nonhuman primates supporting the notion that Ad early gene-products limit specific immune responses. Ad constructed with deletions in early genes and expressing HIV envelope protein was shown to induce greater HIV-specific cellular immune responses and higher titer antibodies compared to the parental Ad with the early genes. In addition to eliciting enhanced immunity, the deleted Ad possesses more space for insertion of additional or larger transgenes needed for targeting other infectious agents or cancers.

2.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463978

ABSTRACT

T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.


Subject(s)
Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/physiology , Animals , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral/immunology , Immunization/methods , Lymph Nodes/immunology , Macaca mulatta/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination/methods , Viremia/immunology
3.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021899

ABSTRACT

An effective human immunodeficiency virus (HIV) vaccine has yet to be developed, and defining immune correlates of protection against HIV infection is of paramount importance to inform future vaccine design. The complement system is a component of innate immunity that can directly lyse pathogens and shape adaptive immunity. To determine if complement lysis of simian immunodeficiency virus (SIV) and/or SIV-infected cells represents a protective immune correlate against SIV infection, sera from previously vaccinated and challenged rhesus macaques were analyzed for the induction of antibody-dependent complement-mediated lysis (ADCML). Importantly, the vaccine regimen, consisting of a replication-competent adenovirus type 5 host-range mutant SIV recombinant prime followed by a monomeric gp120 or oligomeric gp140 boost, resulted in overall delayed SIV acquisition only in females. Here, sera from all vaccinated animals induced ADCML of SIV and SIV-infected cells efficiently, regardless of sex. A modest correlation of SIV lysis with a reduced infection rate in males but not females, together with a reduced peak viremia in all animals boosted with gp140, suggested a potential for influencing protective efficacy. Gag-specific IgG and gp120-specific IgG and IgM correlated with SIV lysis in females, while Env-specific IgM correlated with SIV-infected cell lysis in males, indicating sex differences in vaccine-induced antibody characteristics and function. In fact, gp120/gp140-specific antibody functional correlates between antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, and ADCML as well as the gp120-specific IgG glycan profiles and the corresponding ADCML correlations varied depending on the sex of the vaccinees. Overall, these data suggest that sex influences vaccine-induced antibody function, which should be considered in the design of globally effective HIV vaccines in the future.IMPORTANCE An HIV vaccine would thwart the spread of HIV infection and save millions of lives. Unfortunately, the immune responses conferring universal protection from HIV infection are poorly defined. The innate immune system, including the complement system, is an evolutionarily conserved, basic means of protection from infection. Complement can prevent infection by directly lysing incoming pathogens. We found that vaccination against SIV in rhesus macaques induces antibodies that are capable of directing complement lysis of SIV and SIV-infected cells in both sexes. We also found sex differences in vaccine-induced antibody species and their functions. Overall, our data suggest that sex affects vaccine-induced antibody characteristics and function and that males and females might require different immune responses to protect against HIV infection. This information could be used to generate highly effective HIV vaccines for both sexes in the future.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Complement System Proteins/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/drug effects , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Animals , Complement System Proteins/agonists , Complement System Proteins/genetics , Cytotoxicity, Immunologic , Female , Gene Expression Regulation , Gene Products, env/administration & dosage , Gene Products, env/genetics , Gene Products, env/immunology , Immune Sera/chemistry , Immunization, Secondary/methods , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Macaca mulatta , Male , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Sex Factors , Signal Transduction , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccines, Synthetic , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
4.
J Immunol ; 199(9): 3202-3211, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28947538

ABSTRACT

NK cells are key components of the immune system because of their rapid response potential and their ability to mediate cytotoxic and immunomodulatory functions. Additionally, NK cells have recently been shown to persist for long periods in vivo and to have the capacity to establish immunologic memory. In the current study, we assessed the phenotype and function of circulatory and tissue-resident NK cells in a unique cohort of SIV-controlling rhesus macaques that maintained low to undetectable levels of viremia in the chronic phase of infection. By contrasting NK responses of these macaques with those observed in SIV-noncontrolling and uninfected macaques, we aimed to identify markers and activities of NK subpopulations associated with disease control. We show in this article that most differences among NK cells of the three groups of macaques were observed in tissue-resident cells. Although SIV infection resulted in NK cell dysfunction, double-negative NK cells and those expressing CXCR3, NKG2D, and IL-18Rα were associated with viremia control, as was Ab-dependent cytotoxic function. Our results suggest several novel targets for therapeutic intervention.


Subject(s)
Killer Cells, Natural/immunology , Liver/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Spleen/immunology , Animals , Killer Cells, Natural/pathology , Liver/pathology , Macaca mulatta , NK Cell Lectin-Like Receptor Subfamily K/immunology , Receptors, CXCR3/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Spleen/pathology , Viremia/immunology , Viremia/pathology
5.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27928009

ABSTRACT

In a recent study, we found that protection following simian immunodeficiency virus (SIV) exposure correlated with rectal plasma cell frequency in vaccinated female rhesus macaques. We sought to determine if the same macaques maintained high mucosal plasma cell frequencies postinfection and if this translated to reduced viremia. Although delayed SIV acquisition did not predict subsequent viral control, alterations existed in the distribution of plasma cells and plasmablasts between macaques that exhibited high or low viremia. Flow cytometric analysis of cells from rectal biopsy specimens, bone marrow, and mesenteric lymph nodes of vaccinated infected, unvaccinated infected, and uninfected macaques identified two main IRF4hi subsets of interest: CD138+ plasma cells, and CD138- plasmablasts. In rectal tissue, plasma cell frequency positively correlated with plasma viremia and unvaccinated macaques had increased plasma cells and plasmablasts compared to vaccinated animals. Likewise, plasmablast frequency in the mesenteric lymph node correlated with viremia. However, in bone marrow, plasmablast frequency negatively correlated with viremia. Accordingly, low-viremic macaques had a higher frequency of both bone marrow IRF4hi subsets than did animals with high viremia. Significant reciprocal relationships between rectal and bone marrow plasmablasts suggested that efficient trafficking to the bone marrow as opposed to the rectal mucosa was linked to viral control. mRNA expression analysis of proteins involved in establishment of plasma cell niches in sorted bone marrow and rectal cell populations further supported this model and revealed differential mRNA expression patterns in these tissues. IMPORTANCE: As key antibody producers, plasma cells and plasmablasts are critical components of vaccine-induced immunity to human immunodeficiency virus type 1 (HIV-1) in humans and SIV in the macaque model; however, few have attempted to examine the role of these cells in viral suppression postinfection. Our results suggest that plasmablast trafficking to and retention in the bone marrow play a previously unappreciated role in viral control and contrast the potential contribution of mucosal plasma cells to mediate protection at sites of infection with that of bone marrow plasmablasts and plasma cells to control viremia during chronic infection. Manipulation of niche factors influencing the distribution and maintenance of these critical antibody-secreting cells may serve as potential therapeutic targets to enhance antiviral responses postvaccination and postinfection.


Subject(s)
Interferon Regulatory Factors/metabolism , Plasma Cells/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Viremia , Animals , Biomarkers , Cell Survival , Female , Gene Expression , Gene Expression Regulation , Immunization , Interferon Regulatory Factors/genetics , Lymph Nodes/immunology , Lymphocyte Count , Macaca mulatta , Male , Organ Specificity/genetics , Plasma Cells/metabolism , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism , Viral Load
6.
Cytotherapy ; 20(3): 407-419, 2018 03.
Article in English | MEDLINE | ID: mdl-29306566

ABSTRACT

BACKGROUND AIMS: Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS: We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS: T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION: These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.


Subject(s)
CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/prevention & control , Receptors, Chimeric Antigen/metabolism , Antigens, CD/metabolism , Binding Sites , CD8-Positive T-Lymphocytes/metabolism , Cell Adhesion Molecules/metabolism , Coculture Techniques , HIV Envelope Protein gp120/chemistry , HIV Infections/therapy , HIV-1/physiology , Humans , Lectins, C-Type/metabolism , Mannose , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Engineering/methods , Receptors, Cell Surface/metabolism , Receptors, Chimeric Antigen/genetics , Transduction, Genetic
7.
J Immunol ; 197(6): 2316-24, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27534560

ABSTRACT

An established sex bias in HIV pathogenesis is linked to immune responses. Recently we reported a vaccine-induced sex bias: vaccinated female but not male rhesus macaques exhibited delayed SIV acquisition. This outcome was correlated with SIV Env-specific rectal IgA, rectal memory B cells, and total rectal plasma cells. To uncover additional contributing factors, using samples from the same study, we investigated memory B cell population dynamics in blood, bone marrow, and rectal tissue during immunization and postchallenge; IgG subtypes and Ab avidity; and regulatory B (Breg) cell frequency and function. Few sex differences were seen in Env-specific memory B cell, plasmablast, or plasma cell frequencies in the three compartments. Males had higher IgG Ab titers and avidity indices than females. However, females had elevated levels of Env-specific IgG1, IgG2, and IgG3 Abs compared with males. gp140-specific IgG3 Abs of females but not males were correlated with Ab-dependent cell-mediated cytotoxicity activity against gp120 targets (p = 0.026) and with Ab-dependent phagocytic activity (p = 0.010). IgG3 Ab of females but not males also correlated with decreased peak viremia (p = 0.028). Peripheral blood CD19(+)CD25(+) Breg cells suppressed T cell proliferation compared with CD19(+)CD25(-) cells (p = 0.031) and exhibited increased IL-10 mRNA expression (p = 0.031). Male macaques postvaccination (p = 0.018) and postinfection (p = 0.0048) exhibited higher Breg frequencies than females. Moreover, male Breg frequencies correlated with peak viremia (p = 0.0071). Our data suggest that vaccinated females developed better Ab quality, contributing to better functionality. The elevated Breg frequencies in males may have facilitated SIV acquisition.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin G/blood , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Affinity , Female , Immunoglobulin G/immunology , Immunologic Memory , Interleukin-10/immunology , Lymphocyte Activation , Macaca mulatta , Phagocytosis , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccination , Viremia/immunology
8.
J Immunol ; 196(4): 1700-10, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26773147

ABSTRACT

Measurement of Ag-specific T follicular helper (TFH) cell activity in rhesus macaques has not previously been reported. Given that rhesus macaques are the animal model of choice for evaluating protective efficacy of HIV/SIV vaccine candidates and that TFH cells play a pivotal role in aiding B cell maturation, quantifying vaccine induction of HIV/SIV-specific TFH cells would greatly benefit vaccine development. In this study, we quantified SIV Env-specific IL-21-producing TFH cells for the first time, to our knowledge, in a nonhuman primate vaccine study. Macaques were primed twice mucosally with adenovirus 5 host range mutant recombinants encoding SIV Env, Rev, Gag, and Nef followed by two i.m. boosts with monomeric SIV gp120 or oligomeric SIV gp140 proteins. At 2 wk after the second protein boost, we obtained lymph node biopsy specimens and quantified the frequency of total and SIV Env-specific IL-21(+) TFH cells and total germinal center B cells, the size and number of germinal centers, and the frequency of SIV-specific Ab-secreting cells in B cell zones. Multiple correlation analyses established the importance of TFH for development of B cell responses in systemic and mucosally localized compartments, including blood, bone marrow, and rectum. Our results suggest that the SIV-specific TFH cells, initially induced by replicating adenovirus-recombinant priming, are long lived. The multiple correlations of SIV Env-specific TFH cells with systemic and mucosal SIV-specific B cell responses indicate that this cell population should be further investigated in HIV vaccine development as a novel correlate of immunity.


Subject(s)
Gene Products, env/immunology , Germinal Center/immunology , Lymph Nodes/immunology , SAIDS Vaccines/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/immunology , Flow Cytometry , Fluorescent Antibody Technique , Immunohistochemistry , Macaca mulatta , Microscopy, Confocal , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology
9.
J Immunol ; 197(7): 2726-37, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27591322

ABSTRACT

The recombinant ALVAC vaccine coupled with the monomeric gp120/alum protein have decreased the risk of HIV and SIV acquisition. Ab responses to the V1/V2 regions have correlated with a decreased risk of virus acquisition in both humans and macaques. We hypothesized that the breadth and functional profile of Abs induced by an ALVAC/envelope protein regimen could be improved by substituting the monomeric gp120 boost, with the full-length single-chain (FLSC) protein. FLSC is a CD4-gp120 fusion immunogen that exposes cryptic gp120 epitopes to the immune system. We compared the immunogenicity and relative efficiency of an ALVAC-SIV vaccine boosted either with bivalent FLSC proteins or with monomeric gp120 in alum. FLSC was superior to monomeric gp120 in directing Abs to the C3 α2 helix, the V5 loop, and the V3 region that contains the putative CCR5 binding site. In addition, FLSC boosting elicited significantly higher binding Abs to V2 and increased both the Ab-dependent cellular cytotoxicity activity and the breadth of neutralizing Abs. However, the FLSC vaccine regimen demonstrated only a trend in vaccine efficacy, whereas the monomeric gp120 regimen significantly decreased the risk of SIVmac251 acquisition. In both vaccine regimens, anti-V2 Abs correlated with a decreased risk of virus acquisition but differed with regard to systemic or mucosal origin. In the FLSC regimen, serum Abs to V2 correlated, whereas in the monomeric gp120 regimen, V2 Abs in rectal secretions, the site of viral challenge, were associated with efficacy.


Subject(s)
Antibodies, Viral/immunology , CD4 Antigens/immunology , Gene Products, env/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Vaccines/immunology , Animals , CD4 Antigens/chemistry , Cell Line , Gene Products, env/chemistry , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/prevention & control
10.
PLoS Pathog ; 11(8): e1005101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26267144

ABSTRACT

Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection.


Subject(s)
B-Lymphocytes/immunology , Intestinal Mucosa/immunology , SAIDS Vaccines/immunology , Sex Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Immunity, Cellular/immunology , Immunity, Mucosal/immunology , Macaca mulatta , Male , Rectum , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology
11.
Immunology ; 145(2): 288-99, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25626488

ABSTRACT

Natural killer (NK) cells are essential components of the immune system, and due to their rapid response potential, can have a great impact during early anti-viral immune responses. We have previously shown that interleukin-2-dependent NK and CD4(+) T-cell co-operative immune responses exist in long-term simian immunodeficiency virus (SIV) -infected controlling macaques and can be rescued in SIV-infected non-controlling macaques by a short course of antiretroviral therapy (ART). Given that co-operative responses may play an important role in disease prevention and therapeutic treatment, in the present study we sought to determine if these responses can be enhanced in chronically SIV-infected macaques by vaccination with a single-dose of envelope protein given during ART. To this end, we treated 14 chronically SIV-infected macaques with ART for 11 weeks and gave 10 of these macaques a single intramuscular dose of SIV gp120 at week 9 of treatment. ART significantly decreased plasma and mucosal viral loads, increased the numbers of circulating CD4(+) T cells in all macaques, and increased T-cell-dependent envelope- and gag-specific interferon-γ and tumour necrosis factor-α production by circulatory CD56(+) NK cells. The therapeutic envelope immunization resulted in higher envelope-specific responses compared with those in macaques that received ART only. Functional T-cell responses restored by ART and therapeutic Env immunization were correlated with transiently reduced plasma viraemia levels following ART release. Collectively our results indicate that SIV-specific T-cell-dependent NK cell responses can be efficiently rescued by ART in chronically SIV-infected macaques and that therapeutic immunization may be beneficial in previously vaccinated individuals.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Gene Products, env/pharmacology , Killer Cells, Natural/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/immunology , Vaccination , Animals , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/pathology , Female , Gene Products, env/immunology , Immunity, Cellular/drug effects , Killer Cells, Natural/pathology , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Time Factors , Tumor Necrosis Factor-alpha/immunology
12.
Clin Immunol ; 155(1): 91-107, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25229164

ABSTRACT

To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.


Subject(s)
Immunity, Cellular , Simian Immunodeficiency Virus/immunology , Viral Vaccines/immunology , Animals , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes , Cells, Cultured , Female , Macaca mulatta
13.
Clin Immunol ; 153(2): 308-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24907411

ABSTRACT

Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.


Subject(s)
Immunity, Mucosal/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Vaccination/methods , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Drug Therapy, Combination , Enzyme-Linked Immunospot Assay , Gene Products, env/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Time Factors , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
14.
J Immunol ; 189(4): 1878-85, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22798665

ABSTRACT

Control of infectious disease may be accomplished by successful vaccination or by complex immunologic and genetic factors favoring Ag-specific multicellular immune responses. Using a rhesus macaque model, we evaluated Ag-specific T cell-dependent NK cell immune responses in SIV-infected macaques, designated "controlling" or "noncontrolling" based on long-term chronic viremia levels, to determine whether NK cell effector functions contribute to control of SIV infection. We observed that Gag stimulation of macaque PBMCs induced subset-specific NK cell responses in SIV-controlling but not SIV-noncontrolling animals, as well as that circulatory NK cell responses were dependent on Ag-specific IL-2 production by CD4(+) central memory T cells. NK cell activation was blocked by anti-IL-2-neutralizing Ab and by CD4(+) T cell depletion, which abrogated the Gag-specific responses. Among tissue-resident cells, splenic and circulatory NK cells displayed similar activation profiles, whereas liver and mucosal NK cells displayed a decreased activation profile, similar in SIV-controlling and -noncontrolling macaques. Lack of T cell-dependent NK cell function was rescued in SIV-noncontrolling macaques through drug-mediated control of viremia. Our results indicate that control of disease progression in SIV-controlling macaques is associated with cooperation between Ag-specific CD4(+) T cells and NK cell effector function, which highlight the importance of such cell-to-cell cooperativity in adaptive immunity and suggest that this interaction should be further investigated in HIV vaccine development and other prophylactic vaccine approaches.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Flow Cytometry , Killer Cells, Natural/metabolism , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/metabolism , Viral Load
15.
Sci Adv ; 9(31): eadg8694, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37540748

ABSTRACT

The magnitude of CAR T cell expansion has been associated with clinical efficacy. Although cytokines can augment CAR T cell proliferation, systemically administered cytokines can result in toxicities. To gain the benefits of cytokine signaling while mitigating toxicities, we designed constitutively active synthetic cytokine receptor chimeras (constitutive Turbodomains) that signal in a CAR T cell-specific manner. The modular design of Turbodomains enables diverse cytokine signaling outputs from a single homodimeric receptor chimera and allows multiplexing of different cytokine signals. Turbodomains containing an IL-2/15Rß-derived signaling domain closely mimicked IL-15 signaling and enhanced CAR T cell potency. Allogeneic TurboCAR T cells targeting BCMA showed no evidence of aberrant proliferation yet displayed enhanced expansion and antitumor activity, prolonging survival and preventing extramedullary relapses in mouse models. These results illustrate the potential of constitutive Turbodomains to achieve selective potentiation of CAR T cells and demonstrate the safety and efficacy of allogeneic BCMA TurboCAR T cells, supporting clinical evaluation in multiple myeloma.


Subject(s)
Hematopoietic Stem Cell Transplantation , Receptors, Chimeric Antigen , Animals , Mice , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , B-Cell Maturation Antigen , Neoplasm Recurrence, Local , T-Lymphocytes , Cytokines
16.
J Immunol ; 184(12): 7047-56, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483775

ABSTRACT

Type I IFNs exert diverse effector and regulatory functions in host immunity to viral and nonviral infections; however, the role of endogenous type I IFNs in leishmaniasis is unclear. We found that type I IFNR-deficient (IFNAR-/-) mice developed attenuated lesions and reduced Ag-specific immune responses following infection with Leishmania amazonensis parasites. The marked reduction in tissue parasites, even at 3 d in IFNAR-/- mice, seemed to be indicative of an enhanced innate immunity. Further mechanistic analyses indicated distinct roles for neutrophils in parasite clearance; IFNAR-/- mice displayed a rapid and sustained infiltration of neutrophils, but a limited recruitment of CD11b+Ly-6C+ inflammatory monocytes, into inflamed tissues; interactions between IFNAR-/-, but not wild-type (WT) or STAT1-/-, neutrophils and macrophages greatly enhanced parasite killing in vitro; and infected IFNAR-/- neutrophils efficiently released granular enzymes and had elevated rates of cell apoptosis. Furthermore, although coinjection of parasites with WT neutrophils or adoptive transfer of WT neutrophils into IFNAR-/- recipients significantly enhanced infection, the coinjection of parasites with IFNAR-/- neutrophils greatly reduced parasite survival in WT recipients. Our findings reveal an important role for type I IFNs in regulating neutrophil/monocyte recruitment, neutrophil turnover, and Leishmania infection and provide new insight into innate immunity to protozoan parasites.


Subject(s)
Immunity, Innate , Leishmaniasis, Cutaneous/immunology , Neutrophils/immunology , Receptor, Interferon alpha-beta/immunology , Animals , Chemotaxis, Leukocyte/immunology , Enzyme-Linked Immunosorbent Assay , Female , Leishmania/immunology , Mice , Mice, Knockout , Neutrophils/metabolism , Neutrophils/parasitology , Receptor, Interferon alpha-beta/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Immunology ; 134(3): 326-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21978002

ABSTRACT

Natural killer (NK) cells are important components of the innate immune system that mediate effector and regulatory functions. As effector cells, NK cells help control virus-infected cells through cell-mediated antibody-dependent mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). Although macaques are an important and reliable animal model for the study of retrovirus-induced human diseases, and despite the crucial role played by NK cells in innate and adaptive immune responses against simian immunodeficiency virus (SIV), only a few studies have attempted to characterize different macaque NK cell subpopulations. In the present study, we identified a subpopulation of circulatory CD8α(-) macaque NK cells that express NK lineage markers and exhibit cytotoxic potential. CD8α(-) NK cells were phenotypically characterized as CD3(-) CD14(-) CD20(-) CD8α(-) cells that express NK cell markers including CD16, CD56, granzyme B, perforin, NKG2D and KIR2D. Based on their CD56/CD16 expression patterns, cells within the CD8α(-) gate can be divided into four subpopulations: CD56(dim) CD16(bright) , CD56(dim) CD16(-) , CD56(bright) CD16(-) , and CD56(-) CD16(-) cells. In contrast, CD8α(+) NK cells are 95% CD56(dim) CD16(bright) , which correlates with their high cytotoxic potential. Upon interleukin-15 activation, CD8α(-) cells up-regulated CD69 expression and produced low levels of interferon-γ and tumour necrosis factor-α. Sorted CD8α(-) NK cells were capable of killing MHC-I-devoid target cells and mediated ADCC responses against SIV gp120-coated target cells in the presence of macaque anti-gp120 antibodies. Taking into account CD8α(-) myeloid dendritic cells, we show that about 35% of macaque CD8α(-) cells represent a novel, functional population of circulatory NK cells that possesses cytotoxic potential and is capable of mediating anti-viral immune responses.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , CD8 Antigens/immunology , Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , CD56 Antigen/immunology , CD56 Antigen/metabolism , CD8 Antigens/metabolism , Cells, Cultured , Cytotoxicity, Immunologic/drug effects , Flow Cytometry , Granzymes/genetics , Granzymes/immunology , Granzymes/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-12/pharmacology , Interleukin-15/pharmacology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macaca mulatta , Membrane Glycoproteins/immunology , Perforin/genetics , Perforin/immunology , Perforin/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Envelope Proteins/immunology
18.
Infect Immun ; 78(1): 301-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19901067

ABSTRACT

Leishmania (subgenus Viannia) braziliensis is the causative agent of mucocutaneous leishmaniasis (ML) in South America, and ML is characterized by excessive T- and B-cell responses to the parasite. We speculate that the unbalanced production of inflammatory mediators in response to L. braziliensis infection contributes to cell recruitment and disease severity. To test this hypothesis, we first examined the response of peripheral blood mononuclear cells (PBMCs) from healthy volunteers to L. braziliensis infection. We observed that while L. braziliensis infection induced the production of chemokine (C-X-C motif) ligand 10 (CXCL10) and interleukin-10 (IL-10) in human PBMCs and macrophages (MPhis), enhanced expression of CXCL10 and its receptor, chemokine CXC receptor (CXCR3), was predominantly detected in CD14(+) monocytes. The chemoattractant factors secreted by L. braziliensis-infected cells were highly efficient in recruiting uninfected PBMCs (predominantly CD14(+) cells) through Transwell membranes. Serum samples from American tegumentary leishmaniasis (ATL) patients (especially the ML cases) had significantly higher levels of CXCL10, CCL4, and soluble tumor necrosis factor (TNF) receptor II (sTNFRII) than did those of control subjects. Our results suggest that, following L. braziliensis infection, the production of multiple inflammatory mediators by the host may contribute to disease severity by increasing cellular recruitment.


Subject(s)
Chemokine CXCL10/metabolism , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/immunology , Monocytes/metabolism , Monocytes/parasitology , Animals , Cells, Cultured , Chemokine CXCL10/genetics , Gene Expression Regulation/immunology , Humans , Leishmaniasis, Cutaneous/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism
19.
Infect Immun ; 77(7): 2948-56, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19364834

ABSTRACT

We have previously reported that Leishmania braziliensis infection can activate murine dendritic cells (DCs) and upregulate signaling pathways that are essential for the initiation of innate immunity. However, it remains unclear whether Toll-like receptors (TLRs) are involved in L. braziliensis-mediated DC activation. To address this issue, we generated bone marrow-derived DCs from MyD88(-/-) and TLR2(-/-) mice and examined their responsiveness to parasite infection. While wild-type DCs were efficiently activated to produce cytokines and prime naïve CD4(+) T cells, L. braziliensis-infected MyD88(-/-) DCs exhibited less activation and decreased production of interleukin-12 (IL-12) p40. Furthermore, MyD88(-/-) mice were more susceptible to infection in that they developed larger and prolonged lesions compared to those in control mice. In sharp contrast, the lack of TLR2 resulted in an enhanced DC activation and increased IL-12 p40 production after infection. As such, L. braziliensis-infected TLR2(-/-) DCs were more competent in priming naïve CD4(+) T cells in vitro than were their controls, findings which correlated with an increased gamma interferon production in vivo and enhanced resistance to infection. Our results suggest that while MyD88 is indispensable for the generation of protective immunity to L. braziliensis, TLR2 seems to have a regulatory role during infection.


Subject(s)
Dendritic Cells/immunology , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/immunology , Myeloid Differentiation Factor 88/immunology , Toll-Like Receptor 2/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Leishmaniasis, Cutaneous/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Severity of Illness Index , Toll-Like Receptor 2/deficiency
20.
Infect Immun ; 76(11): 5100-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18794295

ABSTRACT

The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well-documented; however, limited information on DC-NK cell interaction during parasitic infections is available. Given that some Leishmania parasites are known to prevent or suppress DC activation, we developed a DC-NK cell coculture system to examine the role of NK cells in modulating the functions of Leishmania-infected DCs. We found that the addition of freshly isolated, resting NK cells significantly promoted the activation of DCs that were preinfected with Leishmania amazonensis promastigotes and that these activated DCs, in turn, stimulated NK cell activation mostly via cell contact-dependent mechanisms. Notably, L. amazonensis amastigote infection failed to activate DCs, and this lack of DC activation could be partially reversed by the addition of preactivated NK (ANK) cells but not resting NK cells. Moreover, the adoptive transfer of ANK cells into L. amazonensis-infected mice markedly increased DC and T-cell activation and reduced tissue parasite loads at 1 and 3 weeks postinfection. These results suggest differential roles of DC-NK cell cross talk at different stages of Leishmania infection and provide new insight into the interplay of components of the innate immune system during parasitic infection.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/parasitology , Killer Cells, Natural/immunology , Killer Cells, Natural/parasitology , Leishmania/immunology , Leishmaniasis/immunology , Animals , Antigen Presentation/immunology , Cell Communication/immunology , Coculture Techniques , Cricetinae , Cytokines/biosynthesis , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Lymphocyte Activation/immunology , Mice , Receptor Cross-Talk/immunology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL