ABSTRACT
We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.
Subject(s)
Macrocyclic Compounds , Peptides , Solid-Phase Synthesis Techniques , Sulfides , Sulfides/chemistry , Sulfides/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Molecular Structure , CyclizationABSTRACT
Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.
Subject(s)
Enzyme Inhibitors , Ethers , Humans , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , HeLa Cells , Indoleamine-Pyrrole 2,3,-DioxygenaseABSTRACT
Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.
Subject(s)
Pyridines , TYK2 Kinase , Mice , Animals , Structure-Activity Relationship , Pyridines/pharmacologyABSTRACT
Inhibition of monoacylglycerol transferase 2 (MGAT2) has recently emerged as a potential therapeutic strategy for the treatment of metabolic diseases such as obesity, diabetes and non-alcoholic steatohepatitis (NASH). Metabolism studies with our clinical lead (1) suggested variability in in vitro glucuronidation rates in liver microsomes across species, which made projection of human doses challenging. In addition, the observation of deconjugation of the C3-C4 double bond in the dihydropyridinone ring of 1 in solution had the potential to complicate its clinical development. This report describes our lead optimization efforts in a novel pyridinone series, exemplified by compound 33, which successfully addressed both of these potential issues.
Subject(s)
Metabolic Diseases , Monoglycerides , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemistry , Obesity/drug therapy , Metabolic Diseases/drug therapyABSTRACT
We describe a stereodefined synthesis of the newly identified non-natural phosphorothioate cyclic dinucleotide (CDN) STING agonist, BMT-390025. The new route avoids the low-yielding racemic approach using P(III)-based reagents, and the stereospecific assembly of the phosphorothioate linkages are forged via the recently invented P(V)-based platform of the so-called PSI (Ψ) reagent system. This P(V) approach allows for the complete control of chirality of the P-based linkages and enabled conclusive evidence of the absolute configuration. The new approach offers robust procedures for preparing the stereodefined CDN in eight steps starting from advanced nucelosides, with late-stage direct drop isolations and telescoped steps enabling an efficient scale-up that proceeded in an overall 15% yield to produce multigram amounts of the CDN.
ABSTRACT
We describe an efficient synthetic route to differentially protected diester, 1-(tert-butyl) 4-methyl (1R,2S,4R)-2-methylcyclohexane-1,4-dicarboxylate (+)-1, via palladium-catalyzed methoxycarbonylation of an enol triflate derived from a Hagemann's ester derivative followed by a stereoselective Crabtree hydrogenation. Diester 1 is a novel chiral synthon useful in drug discovery and was instrumental in the generation of useful SAR during a RORγt inverse agonist program. In addition, we describe a second-generation synthesis of the clinical candidate BMS-986251, using diester 1 as a critical component.
Subject(s)
Carboxylic Acids , Esters , Cyclohexanes , StereoisomerismABSTRACT
In an effort to discover oral inverse agonists of RORγt to treat inflammatory diseases, a new 2,6-difluorobenzyl ether series of cyclopentyl sulfones were found to be surprisingly more potent than the corresponding alcohol derivatives. When combined with a more optimized phenyl ((R)-3-phenylpyrrolidin-3-yl)sulfone template, the 2,6-difluorobenzyl ethers yielded a set of very potent RORγt inverse agonists (e.g., compound 26, RORγt Gal4 EC50 11 nM) that are highly selective against PXR, LXRα and LXRß. After optimizing for stability in human and mouse liver microsomes, compounds 29 and 38 were evaluated in vivo and found to have good oral bioavailability (56% and 101%, respectively) in mice. X-ray co-crystal structure of compound 27 in RORγt revealed that the bulky benzyl ether group causes helix 11 of the protein to partially uncoil to create a new, enlarged binding site, which nicely accommodates the benzyl ether moiety, leading to net potency gain.
Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Pyrrolidines/pharmacology , Sulfones/pharmacology , Animals , Crystallography, X-Ray , Drug Discovery , Drug Inverse Agonism , Drug Stability , Hep G2 Cells , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolismABSTRACT
RORγt is the master regulator of the IL-23/IL-17 axis, a pathway that is clinically validated for the treatment of various immunological disorders. Over the last few years, our group has reported different chemotypes that potently act as inverse agonists of RORγt. One of them, the tricyclic pyrrolidine chemotype, has demonstrated biologic-like preclinical efficacy and has led to our clinical candidate BMS-986251. In this letter, we discuss the invention of an annulation reaction which enabled the synthesis of a tricyclic exocyclic amide chemotype and the identification of compounds with RORγt inverse agonist activity. Preliminary structure activity relationships are disclosed.
Subject(s)
Amides/chemistry , Hydrocarbons, Cyclic/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfones/chemistry , Amides/chemical synthesis , Amides/metabolism , Animals , Cyclization , Drug Inverse Agonism , Humans , Hydrocarbons, Cyclic/chemical synthesis , Hydrocarbons, Cyclic/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolismABSTRACT
A novel series of cis-3,4-diphenylpyrrolidines were designed as RORγt inverse agonists based on the binding conformation of previously reported bicyclic sulfonamide 1. Preliminary synthesis and structure-activity relationship (SAR) study established (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidine as the most effective scaffold. Subsequent SAR optimization led to identification of a piperidinyl carboxamide 31, which was potent against RORγt (EC50 of 61 nM in an inverse agonist assay), selective relative to RORα, RORß, LXRα and LXRß, and stable in human and mouse liver microsomes. Furthermore, compound 31 exhibited considerably lower PXR Ymax (46%) and emerged as a promising lead. The binding mode of the diphenylpyrrolidine series was established with an X-ray co-crystal structure of 10A/RORγt.
Subject(s)
Drug Design , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyrrolidines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Humans , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity RelationshipABSTRACT
In order to rapidly develop C6 and C8 SAR of our reported tricyclic sulfone series of RORγt inverse agonists, a late-stage bromination was employed. Although not regioselective, the bromination protocol allowed us to explore new substitution patterns/vectors that otherwise would have to be incorporated at the very beginning of the synthesis. Based on the SAR obtained from this exercise, compound 15 bearing a C8 fluorine was developed as a very potent and selective RORγt inverse agonist. This analog's in vitro profile, pharmacokinetic (PK) data and efficacy in an IL-23 induced mouse acanthosis model will be discussed.
Subject(s)
Heterocyclic Compounds, 3-Ring/therapeutic use , Melanosis/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfones/therapeutic use , Animals , Crystallography, X-Ray , Drug Inverse Agonism , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Interleukin-18 , Male , Melanosis/chemically induced , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokineticsABSTRACT
An X-ray crystal structure of one of our previously discovered RORγt inverse agonists bound to the RORγt ligand binding domain revealed that the cyclohexane carboxylic acid group of compound 2 plays a significant role in RORγt binding, forming four hydrogen bonding and ionic interactions with RORγt. SAR studies centered around the cyclohexane carboxylic acid group led to identification of several structurally diverse and more potent compounds, including new carboxylic acid analogues 7 and 20, and cyclic sulfone analogues 34 and 37. Notably, compounds 7 and 20 were found to maintain the desirable pharmacokinetic profile of 2.
Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pyrrolidines/pharmacology , Sulfones/pharmacology , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Inverse Agonism , Humans , Mice , Models, Molecular , Molecular Structure , Pyrrolidines/administration & dosage , Pyrrolidines/chemistry , Structure-Activity Relationship , Sulfones/administration & dosage , Sulfones/chemistryABSTRACT
We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Ymax in the PXR assay for long term preclinical pharmacokinetic (PK) studies.
Subject(s)
Bridged Bicyclo Compounds/pharmacology , Drug Design , Propanols/pharmacology , Receptors, Retinoic Acid/agonists , Receptors, Steroid/agonists , Sulfonamides/pharmacology , Animals , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Liver X Receptors/agonists , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Pregnane X Receptor , Propanols/chemical synthesis , Propanols/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Retinoic Acid Receptor gammaABSTRACT
An efficient large-scale synthesis of acid 1, a penultimate precursor to the HCV NS5A inhibitor BMS-986097, along with the final API step are described. Three routes were devised for the synthesis of 1 at the various stages of the program. The third generation route, the one that proved scalable and is the main subject of this paper, features a one-step Michael addition of t-butyl 2-((diphenylmethylene)amino)acetate (24) to (E)-benzyl 4-(1-hydroxycyclopropyl)but-2-enoate (28) followed by cyclization and chiral separation to form 27c, the core skeleton of cap piece 1. The epimerization and chiral resolution of 27c followed by further synthetic manipulations involving the carbamate formation, lactone reduction and cyclization, afforded cyclopropyl pyran 1. A detailed study of diphenylmethane deprotection via acid hydrolysis as well as a key lactone to tetrahydropyran conversion, in order to avoid a side reaction that afforded an alternative cyclization product, are discussed. This synthesis was applied to the preparation of more than 100 g of the final API BMS-986097 for toxicology studies.
Subject(s)
Antiviral Agents/chemical synthesis , Glycine/analogs & derivatives , Imidazoles/chemical synthesis , Pyrans/pharmacology , Pyrrolidines/chemical synthesis , Spiro Compounds/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Structure , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/metabolismABSTRACT
The synthesis, structure-activity relationship (SAR) data, and further optimization of the metabolic stability and pharmacokinetic (PK) properties for a previously disclosed class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors are described. These efforts led to the discovery of BMS-961955 as a viable contingency backup to beclabuvir which was recently approved in Japan for the treatment of HCV as part of a three drug, single pill combination marketed as XimencyTM.
Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzazepines/chemistry , Benzazepines/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Benzazepines/pharmacokinetics , Dogs , Haplorhini , Hepacivirus/enzymology , Hepacivirus/metabolism , Hepatitis C/virology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Rats , Viral Nonstructural Proteins/metabolismABSTRACT
An efficient regioselective synthesis of substituted 4-alkylamino and 4-arylaminophthalazin-1(1H)-ones 5 is described. This new method features the formation of substituted phthalazin-1(1H)-ones 3 by the reaction of 2-formylbenzoic acids 1 or 3-hydroxyisobenzofuran-1(3H)-ones 2 with hydrazine to generate phthalazin-1(2H)-ones 3. Subsequent regioselective bromination of phthalazin-1(2H)-ones 3 with benzyltrimethylammonium tribromide (BTMA-Br3) followed by mixed copper-copper oxide-catalyzed amination of 4-bromophthalazin-1(2H)-ones 4 with primary amines generates aminophthalazin-1(2H)-ones in good overall yields.
ABSTRACT
Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.
Subject(s)
Microsomes, Liver/metabolism , Piperidines/chemical synthesis , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Prodrugs/chemical synthesis , Ticlopidine/analogs & derivatives , Biological Phenomena , Clopidogrel , Humans , Microsomes, Liver/drug effects , Piperidines/chemistry , Platelet Aggregation Inhibitors/chemistry , Prodrugs/chemistry , Stereoisomerism , Ticlopidine/chemical synthesis , Ticlopidine/chemistry , Ticlopidine/metabolismABSTRACT
This Letter describes synthesis, SAR, and biological activity of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides as inhibitors of γ-secretase mediated signaling of Notch receptors. Optimization of this series led to the identification of BMS-871 (compound 30) which displayed robust in vivo efficacy in Notch-dependent leukemia and solid tumor xenograft models.
Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Benzodiazepinones/administration & dosage , Benzodiazepinones/pharmacology , Receptors, Notch/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Benzodiazepinones/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Receptors, Notch/metabolism , Structure-Activity RelationshipABSTRACT
Spiropiperidine indoline-substituted diaryl ureas had been identified as antagonists of the P2Y1 receptor. Enhancements in potency were realized through the introduction of a 7-hydroxyl substitution on the spiropiperidinylindoline chemotype. SAR studies were conducted to improve PK and potency, resulting in the identification of compound 3e, a potent, orally bioavailable P2Y1 antagonist with a suitable PK profile in preclinical species. Compound 3e demonstrated a robust antithrombotic effect in vivo and improved bleeding risk profile compared to the P2Y12 antagonist clopidogrel in rat efficacy/bleeding models.
Subject(s)
Phenylurea Compounds/chemistry , Platelet Aggregation Inhibitors/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/chemistry , Thiazoles/chemistry , Urea/analogs & derivatives , Administration, Oral , Animals , Dogs , Half-Life , Macaca fascicularis , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Rats , Receptors, Purinergic P2Y1/metabolism , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Thiazoles/therapeutic use , Thrombosis/drug therapy , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic useABSTRACT
A macrocyclic peptide A was successfully purified in large quantities (â¼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.
Subject(s)
Chromatography, Reverse-Phase , Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Chromatography, Reverse-Phase/methods , Acetates/chemistry , Trifluoroacetic Acid/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Acetonitriles/chemistry , Methanol/chemistryABSTRACT
A series of heterocyclic glucocorticoid receptor (GR) modulators with 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl)propanamide core are described. Structure-activity relationships suggest a combination of H-bond acceptor and a 4-fluorophenyl moiety as being important structural components contributing to the glucocorticoid receptor binding and functional activity for this series of GR modulators.