Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Publication year range
1.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31585081

ABSTRACT

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Rabbits
2.
Nat Immunol ; 22(5): 571-585, 2021 05.
Article in English | MEDLINE | ID: mdl-33903764

ABSTRACT

Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.


Subject(s)
Dendritic Cells, Follicular/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , Stromal Cells/immunology , Aged , Animals , Apoptosis/genetics , Apoptosis/immunology , Cell Proliferation/genetics , Cell Survival/genetics , Cell Survival/immunology , Dendritic Cells, Follicular/metabolism , Female , Fibroblasts/metabolism , Gene Expression Regulation/immunology , Gene Knock-In Techniques , Humans , Immunity, Cellular/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymph Nodes/cytology , Male , Mice , Mice, Transgenic , RNA-Seq , Single-Cell Analysis , Stromal Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
3.
Cell ; 164(1-2): 141-155, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26774822

ABSTRACT

The DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge. Dennd1b(-/-) TH2, but not other TH cells, exhibit delayed receptor-induced T cell receptor (TCR) downmodulation, enhanced TCR signaling, and increased production of effector cytokines. As DENND1B interacts with AP-2 and Rab35, TH2 cells deficient in AP-2 or Rab35 also exhibit enhanced TCR-mediated effector functions. Moreover, human TH2 cells carrying asthma-associated DENND1B variants express less DENND1B and phenocopy Dennd1b(-/-) TH2 cells. These results provide a molecular basis for how DENND1B, a previously unrecognized regulator of TCR downmodulation in TH2 cells, contributes to asthma pathogenesis and how DENN-domain-containing proteins may contribute to other human disorders.


Subject(s)
Asthma/immunology , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Th2 Cells/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/immunology , Female , Guanine Nucleotide Exchange Factors/genetics , Humans , Hypersensitivity/immunology , Lymphocyte Activation , Mice , Polymorphism, Single Nucleotide , Th2 Cells/metabolism , rab GTP-Binding Proteins/genetics
5.
Cell ; 141(1): 166-77, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20371352

ABSTRACT

It has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested. Furthermore, combination of anti-PlGF with anti-VEGF-A antibodies did not result in greater antitumor efficacy than anti-VEGF-A monotherapy. In conclusion, our data argue against an important role of PlGF during primary tumor growth in most models and suggest that clinical evaluation of anti-PlGF antibodies may be challenging.


Subject(s)
Neoplasms/blood supply , Neovascularization, Pathologic , Pregnancy Proteins/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Placenta Growth Factor , Pregnancy Proteins/antagonists & inhibitors , Vascular Endothelial Growth Factors
6.
J Immunol ; 202(1): 183-193, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30510070

ABSTRACT

Both common and rare genetic variants of laccase domain-containing 1 (LACC1, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation. Following oral administration of Citrobacter rodentium, LACC1 knockout (KO) mice had more severe colon lesions compared with wildtype (WT) controls. Immunization with collagen II, a collagen-induced arthritis (CIA) model, resulted in an accelerated onset of arthritis and significantly worse arthritis and inflammation in LACC1 KO mice. Similar results were obtained in a mannan-induced arthritis model. Serum and local TNF in CIA paws and C. rodentium colons were significantly increased in LACC1 KO mice compared with WT controls. The percentage of IL-17A-producing CD4+ T cells was elevated in LACC1 KO mice undergoing CIA as well as aged mice compared with WT controls. Neutralization of IL-17, but not TNF, prevented enhanced mannan-induced arthritis in LACC1 KO mice. These data provide new mechanistic insight into the function of LACC1 in regulating TNF and IL-17 during inflammatory responses. We hypothesize that these effects contribute to immune-driven pathologies observed in individuals carrying LACC1 variants.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Juvenile/immunology , Citrobacter rodentium/physiology , Enterobacteriaceae Infections/immunology , Inflammatory Bowel Diseases/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Oxidoreductases/metabolism , Th17 Cells/immunology , Alleles , Animals , Arthritis, Experimental/microbiology , Arthritis, Juvenile/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-17/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases/genetics , Polymorphism, Genetic , Tumor Necrosis Factors/metabolism
7.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26580007

ABSTRACT

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Subject(s)
Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
8.
EMBO J ; 31(17): 3513-23, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22773185

ABSTRACT

Angiogenesis plays a crucial role during tumorigenesis and much progress has been recently made in elucidating the role of VEGF and other growth factors in the regulation of angiogenesis. Recently, microRNAs (miRNAs) have been shown to modulate a variety of physiogical and pathological processes. We identified a set of differentially expressed miRNAs in microvascular endothelial cells co-cultured with tumour cells. Unexpectedly, most miRNAs were derived from tumour cells, packaged into microvesicles (MVs), and then directly delivered to endothelial cells. Among these miRNAs, we focused on miR-9 due to the strong morphological changes induced in cultured endothelial cells. We found that exogenous miR-9 effectively reduced SOCS5 levels, leading to activated JAK-STAT pathway. This signalling cascade promoted endothelial cell migration and tumour angiogenesis. Remarkably, administration of anti-miR-9 or JAK inhibitors suppressed MV-induced cell migration in vitro and decreased tumour burden in vivo. Collectively, these observations suggest that tumour-secreted miRNAs participate in intercellular communication and function as a novel pro-angiogenic mechanism.


Subject(s)
Endothelial Cells/physiology , MicroRNAs/biosynthesis , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Animals , COS Cells , Cell Line , Cell Line, Tumor , Cell Movement , Chlorocebus aethiops , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/therapeutic use , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
9.
Nature ; 464(7291): 1052-7, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393564

ABSTRACT

The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.


Subject(s)
Antibodies/pharmacology , Antibodies/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Notch/antagonists & inhibitors , Angiogenesis Inhibitors/immunology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Antibodies/adverse effects , Antibodies/immunology , Antibody Specificity/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Goblet Cells/drug effects , Goblet Cells/pathology , Humans , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Peptide Library , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/immunology , Receptor, Notch2/antagonists & inhibitors , Receptor, Notch2/immunology , Receptors, Notch/genetics , Receptors, Notch/immunology , Receptors, Notch/metabolism , Signal Transduction/drug effects
10.
Proc Natl Acad Sci U S A ; 110(15): 6079-84, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530240

ABSTRACT

Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b(+)Gr1(+) myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b(+)Ly6G(+) neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , MAP Kinase Signaling System , Neutrophils/cytology , Proto-Oncogene Protein c-ets-2/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Binding Sites , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Mice, Transgenic , Neoplasms/metabolism , Neovascularization, Pathologic , Neutrophil Infiltration , Protein-Tyrosine Kinases/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors
11.
J Cell Biochem ; 116(4): 618-27, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25399738

ABSTRACT

Mesenchymal stem cells (MSCs) have been shown to integrate into the tumor stroma; however, the precise mechanisms of this process are still elusive. In this study, the EMT phenotype and the enhanced metastatic ability of tumor cells were observed using transwell and trans-endothelial migration assays, respectively, as well as by using electron and laser confocal microscopy. Critical genes were screened and validated using gene arrays and clinical samples, and the changes at the protein level were examined both in vitro and in vivo. Cancer cells acquired an "activated" carcinoma-associated fibroblasts (CAFs) phenotype after being in close contact with MSCs and enhancing tumor metastasis and growth in vivo. Paracrine signals also induced EMT and promoted transwell and trans-endothelial migration, the changes were dependent on ß-catenin, MMP-16, snail and twist. Notably, the higher expression levels of ß-catenin and MMP-16 were correlated with tumor invasion and distant organ and lymph node metastases in intestinal type gastric cancer. MSCs within the tumor niche significantly facilitated tumor growth and metastasis by paracrine cues and close physical connection. This occurred partly through snail, twist and its downstream targets, specifically ß-catenin/MMP-16.


Subject(s)
Epithelial-Mesenchymal Transition , Mesenchymal Stem Cells/physiology , Paracrine Communication , Stomach Neoplasms/pathology , Adult , Animals , Cell Line, Tumor , Coculture Techniques , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , MCF-7 Cells , Male , Mice , NIH 3T3 Cells , Neoplasm Metastasis , Neoplasm Transplantation , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
12.
J Vasc Surg ; 59(5): 1402-9.e1-4, 2014 May.
Article in English | MEDLINE | ID: mdl-23856609

ABSTRACT

BACKGROUND: Platelet-derived growth factor C (PDGF-C) has been reported to promote angiogenesis independently of vascular endothelial growth factor (VEGF), although its significance in postnatal angiogenesis in vivo remains poorly understood. VEGF has been employed as a major molecular tool to induce therapeutic angiogenesis. However, VEGF therapy is not very effective in models of cardiovascular diseases associated with diabetes, and the mechanisms of this phenomenon still remain to be elucidated. METHODS: We used a murine model of hind limb ischemia and of streptozotocin-induced diabetes. RESULTS: Expression of PDGF-C and its receptor PDGFR-α were markedly upregulated in ischemic limbs. Treatment with a neutralizing antibody against PDGF-C significantly impaired blood flow recovery and neovascularization after ischemia almost to the same extent as a VEGF-neutralizing antibody. Mice deficient in PDGF-C exhibited reduced blood flow recovery after ischemia compared with wild-type mice, confirming a strong proangiogenic activity of PDGF-C. Next, we injected an expression vector encoding PDGF-C into ischemic limbs. Blood flow recovery and neovascularization after ischemia were significantly improved in the groups treated with PDGF-C compared with controls. Attenuation of angiogenic responses to ischemia has been reported in patients with diabetes even after VEGF treatment, although a precise mechanism remains unknown. We hypothesized that PDGF-C might relate to the impaired angiogenesis of diabetes. We tested this hypothesis by inducing diabetes by intraperitoneal injection of streptozotocin. Expression levels of PDGF-C at baseline and after ischemia were significantly lower in limb tissues of diabetic mice than in those of control mice, whereas expression levels of other members of the PDGF family and VEGF were not changed or were even higher in diabetic mice. Introduction of VEGF complementary DNA expression plasmid vector into ischemic limbs did not improve blood flow recovery. However, these changes were effectively reversed by additional introduction of the PDGF-C complementary DNA plasmid vector. CONCLUSIONS: These results indicate that downregulation of PDGF-C expression in limb tissues of diabetic mice contributes to impaired angiogenesis and suggest that introduction of PDGF-C might be a novel strategy for therapeutic angiogenesis, especially in the diabetic state. CLINICAL RELEVANCE: Angiogenesis and arteriogenesis after ischemia are attenuated in most diabetic patients, although the precise mechanisms remain unclear. Platelet-derived growth factors (PDGFs) have a variety of functions on many cell types, and PDGF-C stimulates angiogenesis and revascularizes ischemic tissues. This study indicates the role for PDGF-C as a critical regulator of impaired angiogenesis of diabetes and suggests that PDGF-C might be a novel target for the treatment of ischemic cardiovascular diseases in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetic Angiopathies/metabolism , Ischemia/metabolism , Lymphokines/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Platelet-Derived Growth Factor/metabolism , Animals , Antibodies, Neutralizing/administration & dosage , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/physiopathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/therapy , Gene Transfer Techniques , Hindlimb , Ischemia/genetics , Ischemia/physiopathology , Ischemia/therapy , Lymphokines/antagonists & inhibitors , Lymphokines/deficiency , Lymphokines/genetics , Lymphokines/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropilin-1/metabolism , Neuropilin-2/metabolism , Platelet-Derived Growth Factor/antagonists & inhibitors , Platelet-Derived Growth Factor/deficiency , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/immunology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Recovery of Function , Regional Blood Flow , Signal Transduction , Time Factors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
13.
Proc Natl Acad Sci U S A ; 108(28): 11590-5, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21709213

ABSTRACT

PlGF, one of the ligands for VEGFR-1, has been implicated in tumor angiogenesis. However, more recent studies indicate that genetic or pharmacological inhibition of PlGF signaling does not result in reduction of microvascular density in a variety of tumor models. Here we screened 12 human tumor cell lines and identified 3 that are growth inhibited by anti-PlGF antibodies in vivo. We found that efficacy of anti-PlGF treatment strongly correlates with VEGFR-1 expression in tumor cells, but not with antiangiogenesis. In addition, PlGF induced VEGFR-1 signaling and biological responses in tumor cell lines sensitive to anti-PlGF, but not in refractory tumor cell lines or in endothelial cells. Also, genetic ablation of VEGFR-1 signaling in the host did not affect the efficacy of PlGF blockade. Collectively, these findings suggest that the role of PlGF in tumorigenesis largely consists of promoting autocrine/paracrine growth of tumor cells expressing a functional VEGFR-1 rather than stimulation of angiogenesis.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Neoplasms/immunology , Neoplasms/therapy , Pregnancy Proteins/antagonists & inhibitors , Pregnancy Proteins/immunology , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Neoplasms/blood supply , Neoplasms/etiology , Neovascularization, Pathologic , Placenta Growth Factor , Pregnancy Proteins/pharmacology , RNA, Small Interfering/genetics , Signal Transduction , Stromal Cells/metabolism , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/genetics
14.
Cancer Res Commun ; 4(2): 540-555, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38358346

ABSTRACT

Type I IFN signaling is a crucial component of antiviral immunity that has been linked to promoting the efficacy of some chemotherapeutic drugs. We developed a reporter system in HCT116 cells that detects activation of the endogenous IFI27 locus, an IFN target gene. We screened a library of annotated compounds in these cells and discovered Aurora kinase inhibitors (AURKi) as strong hits. Type I IFN signaling was found to be the most enriched gene signature after AURKi treatment in HCT116, and this signature was also strongly enriched in other colorectal cancer cell lines. The ability of AURKi to activate IFN in HCT116 was dependent on MAVS and RIG-I, but independent of STING, whose signaling is deficient in these cells. MAVS dependence was recapitulated in other colorectal cancer lines with STING pathway deficiency, whereas in cells with intact STING signaling, the STING pathway was required for IFN induction by AURKi. AURKis were found to induce expression of endogenous retroviruses (ERV). These ERVs were distinct from those induced by the DNA methyltransferase inhibitors (DNMTi), which can induce IFN signaling via ERV induction, suggesting a novel mechanism of action. The antitumor effect of alisertib in mice was accompanied by an induction of IFN expression in HCT116 or CT26 tumors. CT26 tumor growth inhibition by alisertib was absent in NSG mice versus wildtype (WT) mice, and tumors from WT mice with alisertib treatment showed increased in CD8+ T-cell infiltration, suggesting that antitumor efficacy of AURKi depends, at least in part, on an intact immune response. SIGNIFICANCE: Some cancers deactivate STING signaling to avoid consequences of DNA damage from aberrant cell division. The surprising activation of MAVS/RIG-I signaling by AURKi might represent a vulnerability in STING signaling deficient cancers.


Subject(s)
Colorectal Neoplasms , Interferon Type I , Animals , Mice , Retroelements , Interferon Lambda , Aurora Kinases/metabolism , Interferon Type I/metabolism , DEAD Box Protein 58/genetics , Receptors, Immunologic
15.
J Pathol ; 227(4): 404-16, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22611017

ABSTRACT

Inhibiting angiogenesis has become an important therapeutic strategy for cancer treatment but, like other current targeted therapies, benefits experienced for late-stage cancers can be curtailed by inherent refractoriness or by acquired drug resistance, requiring a need for better mechanistic understanding of such effects. Numerous preclinical studies have demonstrated that VEGF pathway inhibitors suppress primary tumour growth and metastasis. However, it has been recently reported that short-term VEGF and VEGFR inhibition can paradoxically accelerate tumour invasiveness and metastasis in certain models. Here we comprehensively compare the effects of both antibody and small molecule receptor tyrosine kinase (RTK) inhibitors targeting the VEGF-VEGFR pathway, using short-term therapy in various mouse models of metastasis. Our findings demonstrate that antibody inhibition of VEGF pathway molecules does not promote metastasis, in contrast to selected small molecule RTK inhibitors at elevated-therapeutic drug dosages. In particular, a multi-targeted RTK inhibitor, sunitinib, which most profoundly potentiated metastasis, also increased lung vascular permeability and promoted tumour cell extravasation. Mechanistically, sunitinib, but not anti-VEGF treatment, attenuated endothelial barrier function in culture and caused a global inhibition of protein tyrosine phosphorylation, including molecules important for maintaining endothelial cell-cell junctions. Together these findings indicate that, rather than a specific consequence of inhibiting the VEGF signalling pathway, pharmacological inhibitors of the VEGF pathway can have dose- and drug class-dependent side-effects on the host vasculature. These findings also advocate for the continued identification of mechanisms of resistance to anti-angiogenics and for therapy development to overcome it.


Subject(s)
Angiogenesis Inhibitors/classification , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/classification , Antineoplastic Agents/therapeutic use , Neoplasm Metastasis/drug therapy , Neovascularization, Pathologic/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Benzamides , Benzenesulfonates/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/therapeutic use , Female , Imatinib Mesylate , In Vitro Techniques , Indoles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Niacinamide/analogs & derivatives , Phenylurea Compounds , Piperazines/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/immunology , Sorafenib , Sunitinib , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology
16.
Nature ; 450(7171): 825-31, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18064003

ABSTRACT

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.


Subject(s)
Gastrointestinal Hormones/metabolism , Myeloid Cells/metabolism , Neoplasms/blood supply , Neovascularization, Pathologic , Neuropeptides/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Antineoplastic Agents/pharmacology , Cell Division/drug effects , Cell Line, Tumor , Gastrointestinal Hormones/antagonists & inhibitors , Gastrointestinal Hormones/immunology , Gene Expression Regulation/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Mice , Mice, Nude , Myeloid Cells/drug effects , Neoplasm Transplantation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neuropeptides/antagonists & inhibitors , Neuropeptides/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
17.
Proc Natl Acad Sci U S A ; 107(50): 21248-55, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21081700

ABSTRACT

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF-mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti-G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


Subject(s)
Antigens, Ly/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/drug effects , Granulocytes/immunology , Lung Neoplasms/pathology , Neoplasm Metastasis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement , Female , Gene Expression Profiling , Granulocyte Colony-Stimulating Factor/genetics , Granulocytes/cytology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Microarray Analysis , Neoplasm Transplantation , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
19.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37311583

ABSTRACT

Immunological targeting of pathological cells has been successful in oncology and is expanding to other pathobiological contexts. Here, we present a flexible platform that allows labeling cells of interest with the surface-expressed model antigen ovalbumin (OVA), which can be eliminated via either antigen-specific T cells or newly developed OVA antibodies. We demonstrate that hepatocytes can be effectively targeted by either modality. In contrast, pro-fibrotic fibroblasts associated with pulmonary fibrosis are only eliminated by T cells in initial experiments, which reduced collagen deposition in a fibrosis model. This new experimental platform will facilitate development of immune-based approaches to clear potential pathological cell types in vivo.


Subject(s)
Antibodies , Pulmonary Fibrosis , Humans , Fibroblasts , Hepatocytes , Kinetics
20.
Heliyon ; 9(3): e14238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950615

ABSTRACT

The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.

SELECTION OF CITATIONS
SEARCH DETAIL